Application of synchrotronic IR-microspectroscopy for analysis of integration of biomimetic composites with native dental tissues

  • Pavel V. Seredin Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Dmitry L. Goloshchapov Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Kirill A. Nikitkov Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Vladimir M. Kashkarov Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Yury A. Ippolitov Voronezh State Medical University, 394036 Voronezh, ul. Student, 10
  • Vongsvivut Jitraporn (Pimm) Australian Synchrotron, Synchrotron Light Source Australia Pty LTD, Melburn, Australia
Keywords: biomimetic materials,, native human tooth hard tissue,, IR microspectroscopy,, synchrotron radiation

Abstract

Purpose. The purpose of our work was the study of the features in molecular composition of the interface between dental product – biomimetic composite – hard dental tissue with the use of multidimensional visualization of IR-microspecroscopy data obtained using synchrotron radiation as well as the determination of the advantages of this method for the analysis of organic-mineral interaction between synthetic biomimetic material with hard dental tissues of a human.

Methods and methodology. Technique for the preparation of the samples in order to study the interaction between dental product – biomimetic composite – hard dental tissue involved the following stages: 1 – development of biocomposite substance with the use of nanocrystalline

carbonate-substituted calcium hydroxyapatite and a mixture of the main amino acids, that were found in the composition of the native dental matrix; 2 – recovery of the prepared carious areas of enamel with the use of our proposed biomimetic buffer system; 3 – obtaining of plane-parallel segments of the human teeth comprising the regions of the interface with the use of low-invasive methods for separation and polishing. Investigations of molecular composition in the slices of human teeth were performed by mapping technique of IR-microspectroscopy data obtained by applying attenuated total refl ection technique (ATR-spectroscopy). The study was performed with the use of equipment of Infrared Microspectroscopy (IRM) beamline (Australian synchrotron, Melbourne, Australia).

Results. Applying IR-mapping for the distribution of a certain functional molecular group obtained with the use of synchrotron radiation the difference between the sound dental tissue, dental product and biomimetic transition layer in the interphase areas were found and visualized. In addition, the arrangement and concentration of the functional groups were determined, corresponding to the processes of integration between the biomimetic composite and the native hard dental tissue of a man. Biomimetic system on the basis of nanocrystalline carbonate-substituted calcium hydroxyapatite obtained from biogenic source of calcium and a complex of the main polar amino acids corresponding to the organic-mineral complex of the human teeth that was elaborated in our laboratory was shown to form a functional linkage with the hard dental tissue of a man.

Conclusion. Thus, our microspectroscopy data certainly confi rm the chemical differentiation of materials and the presence of organic-mineral interaction at the boundary of biomimetic system/native hard dental tissue.

 

 

REFERENCES

  1. Rohr N., Fischer J. Tooth surface treatment strategies for adhesive cementation // The Journal of Advanced Prosthodontics, 2017, v. 9(2), pp. 85–92. https://doi.org/10.4047/jap.2017.9.2.85
  2. Pereira C. N. de B., Daleprane B., Miranda G. L. P. de, Magalhães C. S. de, Moreira A. N. Ultramorphology of pre-treated adhesive interfaces between self-adhesive resin cement and tooth structures // Revista de Odontologia da UNESP, 2017, v. 46(5), pp. 249–254. https://doi.org/10.1590/1807-2577.04917
  3. Temel U. B., Van Ende A., Van Meerbeek B., Ermis R. B. Bond strength and cement-tooth interfacial characterization of self-adhesive composite cements //American Journal of Dentistry, 2017, v. 30(4), pp. 205–211.
  4. Watson T. F., Atmeh A. R., Sajini S., Cook R. J., Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease // Dental Materials, 2014, v. 30(1), pp. 50–61. https://doi.org/10.1016/j.dental.2013.08.202
  5. Pontes D. G., Araujo C. T. P., Prieto L. T., de Oliveira D. C. R. S., Coppini E. K., Dias C. T. S., Paulillo L. A. M. S. Nanoleakage of fi ber posts luted with different adhesive strategies and the effect of chlorhexidine on the interface of dentin and self-adhesive cements // General Dentistry, 2015, v. 63(3), pp. 31–37. PMID: 25945761
  6. Teaford M. F., Smith M. M., Ferguson W. J. Development, Function and Evolution of Teeth. Cambridge University Press, 2007, 328 p.
  7. Dorozhkin S. V. Hydroxyapatite and Other Calcium Orthophosphates: Bioceramics, Coatings and Dental Applications [Hardcover]. Nova Science Publishers, Inc New York, 2017, 462 p. URL: https://istina.msu.ru/publications/book/58538935/
  8. Uskoković V. Biomineralization and biomimicry of tooth enamel. Non-Metallic Biomaterials for Tooth Repair and Replacement. Elsevier, 2013, pp. 20–44. URL:http://linkinghub.elsevier.com/retrieve/pii/B9780857092441500021
  9. Niu L., Zhang W., Pashley D. H., Breschi L., Mao J., Chen J., Tay F. R. Biomimetic remineralization of dentin // Dental Materials, 2014, v. 30(1), pp. 77–96. https://doi.org/10.1016/j.dental.2013.07.013
  10. Cao C., Mei, Li Q., Lo E., Chu C. Methods for Biomimetic Mineralisation of Human Enamel: A Systematic Review // Materials, 2015, v. 8(6), pp. 2873–2886. https://doi.org/10.3390/ma8062873
  11. Chen L., Yuan H., Tang B., Liang K., Li J. Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers in vitro // Caries Research, 2015, v. 49(3), pp. 282–290. https://doi.org/10.1159/000375376
  12. Seredin P. V., Goloshchapov D. L., Gushchin M. S., Ippolitov Y. A., Prutskij T. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues. // Journal of Physics: Conference Series, 2017, v. 917(4), pp. 042019. https://doi.org/10.1088/1742-6596/917/4/042019
  13. Xia Z. Biomimetic Principles and Design of Advanced Engineering Materials. John Wiley & Sons, 2016, 321 p.
  14. Dorozhkin S. V. Self-Setting Calcium Orthophosphate Formulations: Cements, Concretes, Pastes and Putties // International Journal of Materials and Chemistry, 2012, v. 1(1), pp. 1–48. https://doi.org/10.5923/j.ijmc.20110101.01
  15. Li H., Gong M., Yang A., Ma J., Li X., Yan Y. Degradable biocomposite of nano calcium-defi cient hydroxyapatite-multi(amino acid) copolymer // International Journal of Nanomedicine, 2012, v. 7, pp. 1287–1295. https://doi.org/10.2147/IJN.S28978
  16. Ruan Q., Zhang Y., Yang X., Nutt S., Moradian-Oldak J. An amelogenin–chitosan matrix promotes assembly of an enamel-like layer with a dense interface// Acta Biomaterialia, 2013, v. 9(7), pp. 7289–7297. https://doi.org/10.1016/j.actbio.2013.04.004
  17. Yao, Shao H., Zhang Q. Development and Characterization of a Novel Amorphous Calcium Phosphate/Multi (Amino Acid) Copolymer Composite for Bone Repair // Journal of Biomaterials and Tissue Engineering, 2015, v. 5(5), pp. 387–390. https://doi.org/10.1166/jbt.2015.1321
  18. Melo M. A. S., Weir M. D., Rodrigues L. K. A., Xu H. H. K. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model // Dental Materials, 2013, v. 29(2), pp. 231–240. https://doi.org/10.1016/j.dental.2012.10.010
  19. Wu X.-T., Mei M., Li Q.-L., Cao C., Chen-L., Xia R., Zhang Z.-H., Chu C. A Direct Electric Field-Aided Biomimetic Mineralization System for Inducing the Remineralization of Dentin Collagen Matrix // Materials, 2015, v. 8(12), pp. 7889–7899. https://doi.org/10.3390/ ma8115433
  20. Barghamadi H., Atai M., Imani M., Esfandeh M. Effects of nanoparticle size and content on mechanical properties of dental nanocomposites: experimental versus modeling // Iranian Polymer Journal, 2015, v. 24. (10), pp. 837–848. https://doi.org/10.1007/s13726-015-0369-5
  21. Wang H., Xiao Z., Yang J., Lu D., Kishen A., Li Y., Chen Z., Que K., Zhang Q., Deng X., Yang X., Cai Q., Chen N., Cong C., Guan B., Li T., Zhang X. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ ACP Nanoparticles Guided by Glycine // Scientifi c Reports, 2017, v. 7(1), рр. 1-13. https://doi.org/10.1038/srep40701
  22. Wu X., Zhao X., Li Y., Yang T., Yan X., Wang K. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel twostep method // Materials Science & Engineering. C, Materials for Biological Applications, 2015, v. 54, pp. 150–157. https://doi.org/10.1016/j.msec.2015.05.006
  23. Aljabo A., Abou Neel E. A., Knowles J. C., Young A. M. Development of dental composites with reactive fi llers that promote precipitation of antibacterial-hydroxyapatite layers // Materials Science and Engineering: C, 2016, v. 60, pp. 285–292. https://doi.org/10.1016/j.msec.2015.11.047
  24. Wang P., Liu P., Peng H., Luo X., Yuan H., Zhang J., Yan Y. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo // Journal of Biomaterials Science. Polymer Edition, 2016, v. 27(11), pp. 1170–1186.   https://doi.org/10.1080/09205063.2016.1184123
  25. Lübke A., Enax J., Wey K., Fabritius H.-O., Raabe D., Epple M. Composites of fl uoroapatite and methylmethacrylate-based polymers (PMMA) for biomimetic tooth replacement // Bioinspiration & Biomimetics, 2016, v. 11(3), pp. 035001. https://doi.org/10.1088/1748-3190/11/3/035001
  26. Sa Y., Gao Y., Wang M., Wang T., Feng X., Wang Z., Wang Y., Jiang T. Bioactive calcium phosphate cement with excellent injectability, mineralization capacity and drug-delivery properties for dental bio- mimetic reconstruction and minimum intervention therapy. RSC Advances, 2016, v. 6(33), pp. 27349–27359. https://doi.org/10.1039/C6RA02488B
  27. Adachi T., Pezzotti G., Yamamoto T., Ichioka H., Boffelli M., Zhu W., Kanamura N. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: II, application to decayed human teeth // Analytical and Bioanalytical Chemistry, 2015, v. 407(12), pp. 3343–3356. https://doi.org/10.1007/s00216-015-8539-z
  28. Mitić Ž., Stolić A., Stojanović S., Najman S., Ignjatović N., Nikolić G., Trajanović M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review // Materials Science and Engineering: C, 2017, v. 79, pp. 930–949. https://doi.org/10.1016/j.msec.2017.05.127
  29. Optical spectroscopy and computational methods in biology and medicine / Ed. by Barańska M., Dordrecht: Springer, 2014, 540 p. URL: http://link.springer.com/10.1007/978-94-007-7832-0
  30. Hędzelek W., Marcinkowska A., Domka L., Wachowiak R. Infrared Spectroscopic Identifi cation of Chosen Dental Materials and Natural Teeth // Acta Physica Polonica A, 2008, v. 114(2), pp. 471–484.  https://doi.org/10.12693/APhysPolA.114.471
  31. Vongsvivut J., Perez-Guaita D., Wood B. R., Heraud P., Khambatta K., Hartnell D., Hackett M. J., Tobin M. J. Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells // The Analyst, 2019, v. 144(10), pp. 3226–3238. https://doi.org/10.1039/c8an01543k
  32. Seredin P., Goloshchapov D., Ippolitov Y., Vongsvivut P. Pathology-specifi c molecular profi les of saliva in patients with multiple dental caries—potential application for predictive, preventive and personalised medical services // EPMA Journal, 2018, v. 9(2), pp. 195–203. https://doi.org/10.1007/s13167-018-0135-9
  33. Dusevich V., Xu C., Wang Y., Walker M. P., Gorski J. P. Identifi cation of a protein-containing enamel matrix layer which bridges with the dentine–enamel junction of adult human teeth // Archives of Oral Biology, 2012, v. 57(12), pp. 1585–1594.  https://doi.org/10.1016/j.archoralbio.2012.04.014
  34. Seredin P. V., Kashkarov V. M., Lukin A. N., Goloshchapov D. L., Ippolitov Y. A. Research Hydroxyapatite Crystals and Organic Components of Hard Tooth Tissues Affected by Dental Caries Using Ftir-Microspectroscopy and Xrd-Microdiffraction // Condensed Matter and Interphases, 2013, v. 15(3), с. 224–231. URL: http://www.kcmf.vsu.ru/resources/t_15_3_2013_002.pdf
  35. Fattibene P., Carosi A., Coste V. D., Sacchetti A., Nucara A., Postorino P., Dore P. A comparative EPR, infrared and Raman study of natural and deproteinated tooth enamel and dentin // Physics in Medicine and Biology, 2005, v. 50(6), pp. 1095. https://doi.org/10.1088/0031-9155/50/6/004
  36. Seredin P., Goloshchapov D., Kashkarov V., Ippolitov Y., Bambery K. The investigations of changes in mineral–organic and carbon–phosphate ratios in the mixed saliva by synchrotron infrared spectroscopy // Results in Physics, 2016, v. 6, pp. 315–321. https://doi.org/10.1016/j.rinp.2016.06.005
  37. Goloshchapov D. L., Kashkarov V. M., Rumyantseva N. A., Seredin P. V., Lenshin A. S., Agapov B. L., Domashevskaya E. P. Synthesis of nanocrystalline hydroxyapatite by precipitation using hen’s eggshell // Ceramics International, 2013, v. 39(4), pp. 4539–4549. https://doi.org/10.1016/j.ceramint.2012.11.050
  38. Goloshchapov D. L., Lenshin A. S., Savchenko D. V., Seredin P.V. Importance of defect nanocrystalline calcium hydroxyapatite characteristics for developing the dental biomimetic composites // Results in Physics, 2019, v. 13, pp. 102158. https://doi.org/10.1016/j.rinp.2019.102158
  39. Nanci A. Ten Cate’s Oral Histology: Development, Structure, and Function. 8th ed., Elsevier Health Sciences, 2013, 400 p.
  40. Ippolitov Ju. A. Vozmozhnost’ povyshenija biologicheskoj tropnosti svetootverzhdaemoj bondingovoj sistemy dlja adgezii tverdyh tkanej zuba k plombirovochnomu material [The possibility of increasing the biological tropism of the lightcuring bonding system for adhesion of hard tooth tissues to the filling material]. Volgogradskij nauchno-medicinskij zhurnal, 2010, v. 4 (28), pp. 31–34. URL: https://www.volgmed.ru/uploads/journals/articles/1293119124-bulletin-2010-4-815.pdf
  41. Seredin P., Goloshchapov D., Prutskij T., Ippolitov Y. Phase Transformations in a Human Tooth Tissue at the Initial Stage of Caries. PLoS ONE, 2015, v. 10(4), pp. 1–11. https://doi.org/10.1371/journal.pone.0124008
  42. Seredin P. V., Goloshchapov D. L., Prutskij T., Ippolitov Yu. A. A Simultaneous Analysis of Microregions of Carious Dentin by the Methods of Laser- Induced Fluorescence and Raman Spectromicroscopy. Optics and Spectroscopy, 2018, v. 125(5), pp. 803–809. https://doi.org/10.1134/S0030400X18110267
  43. Seredin P. V., Goloshchapov D. L., Prutskij T., Ippolitov Yu. A. Fabrication and characterisation of composites materials similar optically and in composition to native dental tissues. Results in Physics, 2017, v. 7, pp. 1086–1094. https://doi.org/10.1016/j.rinp.2017.02.025

Downloads

Download data is not yet available.

Author Biographies

Pavel V. Seredin, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Seredin Pavel V. — Dr. Sci. (Phys.-Math.), Senior Researcher, Department of Solid State Physic and
Nanostructures, Voronezh State University, Voronezh, Russian Federation; e-mail: paul@phys.ru.                    ORCID iD 0000-0002-6724-0063.

Dmitry L. Goloshchapov, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Goloshchapov Dmitry L. — Cand. Sci. (Phys. Math.), Chief Engineer, Senior Researcher, Department
of Solid State Physic and Nanostructures, Voronezh State University, Voronezh, Russian Federation;
e-mail: goloshchapov@phys.ru. ORCID iD 0000-0002-1400-2870

Kirill A. Nikitkov, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Nikitkov Kirill A. – Bachelor of Science, Department of Solid State Physic and Nanostructures, Voronezh
State University, Voronezh, Russian Federation.

Vladimir M. Kashkarov, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Bartenev Vladislav N. – Bachelor of Science, Department of Solid State Physic and Nanostructures,
Voronezh State University, Voronezh, Russian Federation

Yury A. Ippolitov, Voronezh State Medical University, 394036 Voronezh, ul. Student, 10

Ippolitov Yury A. – Dr. Sci. (Med.), Full Professor, Head of Dentistry Institute of Postgraduate Medical Education Department, Voronezh State Medical University, Voronezh, Russian Federation;
e-mail: dsvgma@mail.ru. ORCID iD 0000-0001-9922-137X.

Vongsvivut Jitraporn (Pimm), Australian Synchrotron, Synchrotron Light Source Australia Pty LTD, Melburn, Australia

Jitraporn (Pimm) Vongsvivut – Beamline Scientist, IR Microspectroscopy, Australian Synchrotron,
Synchrotron Light Source Australia Pty LTD, Melburn, Australia; e-mail: jitrapov@ansto.gov.au.                     ORCID iD 0000-0003-0699-3464

Published
2019-06-14
How to Cite
Seredin, P. V., Goloshchapov, D. L., Nikitkov, K. A., Kashkarov, V. M., Ippolitov, Y. A., & Jitraporn (Pimm), V. (2019). Application of synchrotronic IR-microspectroscopy for analysis of integration of biomimetic composites with native dental tissues. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 21(2), 262-277. https://doi.org/10.17308/kcmf.2019.21/764
Section
Статьи

Most read articles by the same author(s)