The influence of the physicochemical nature of the components of the V2O5/GaAs, MnO2/GaAs, V2O5/InP, MnO2/InP, TiO2/InP, and SnO2/InP heterostructures and the oxidation conditions on the surface morphology of the synthesised films

Keywords: Gallium arsenide, Indium phosphide, Heterostructure, Thermal oxidation, Surface morphology, Grain size

Abstract

        The formation of oxide functional films on the surface of semiconductors is a serious technological challenge, which is even more complicated in the nanometre thickness range. It is necessary to form films with specified values of thickness, resistivity, and a certain surface morphology for practical applications. Such films are used in micro- and optoelectronics, environmental monitoring, and alternative energy devices. The goal of this work is to establish the features of the surface morphology of thin films formed as a result of the thermal oxidation of the MnO2/GaAs, V2O5/GaAs, V2O5/InP, MnO2/InP, TiO2/InP, and SnO2/InP heterostructures depending on the physicochemical nature of the components and the oxidation conditions.
         The synthesis of thin films on the InP and GaAs surfaces was carried out by thermal oxidation under the influence of magnetron-deposited layers of chemostimulator-modifiers. The thickness of the formed films and their composition were determined by laser ellipsometry, X-ray phase analysis, and infra-red spectroscopy. The scanning tunnel and atomic force microscopy were used to determine the morphological characteristics of the films and their dependence on the type of semiconductor substrate, the nature of the chemostimulator-modifier, and the conditions of the thermal oxidation.
          The application to the GaАs and InP surfaces of the most effective chemostimulator-modifiers (V2O5 and MnO2) of thermal oxidation and higher temperatures of the oxidation process contributed to the formation of smoother and nanostructured films.

Downloads

Download data is not yet available.

Author Biographies

Anastasia S. Kovaleva, Voronezh State University, 1Universitetskaya pl., Voronezh, 394018, Russian Federation

2nd year master’s degree student, Voronezh State University (Voronezh, Russian Federation).

Boris V. Sladkopevtsev, Voronezh State University, 1Universitetskaya pl., Voronezh, 394018, Russian Federation

PhD in Chemistry, Associate Professor at the Department of Materials Science and Nanosystem Technologies, Voronezh State University (Voronezh, Russian Federation).

Alexey A. Samsonov, Voronezh State University, 1Universitetskaya pl., Voronezh, 394018, Russian Federation

PhD in Chemistry, Lead Engineer at the Department of Materials Science and Nanosystem Technologies, Voronezh State University (Voronezh, Russian Federation).

Svetlana I. Alferova, Voronezh State Pedagogical University, 86 ul. Lenina, Voronezh, 394043, Russian Federation

PhD in Chemistry, Associate Professor at the Department of Chemistry, Voronezh State Pedagogical University (Voronezh, Russian Federation).

Danila G. Kovalev, Voronezh State University, 1Universitetskaya pl., Voronezh, 394018, Russian Federation

2nd year master’s degree student, Voronezh State University (Voronezh, Russian Federation).

Sergey A. Titov, Voronezh State University, 1Universitetskaya pl., Voronezh, 394018, Russian Federation

student, Voronezh State University (Voronezh, Russian Federation).

Nikita D. Priakhin, Voronezh State University, 1Universitetskaya pl., Voronezh, 394018, Russian Federation

student, Voronezh State University (Voronezh, Russian Federation).

Irina Ya. Mittova, Voronezh State University, 1Universitetskaya pl., Voronezh, 394018, Russian Federation

DSc in Chemistry, Professor at the Department of Materials Science and Nanosystems Technologies, Voronezh State University (Voronezh, Russian Federation).

References

Oktyabrsky S., Peide Ya. Fundamentals of III-V Semiconductor MOSFETs. Boston: Springer-Verlag; 2010. 445 р. https://doi.org/10.1007/978-1-4419-1547-4

Alferov Zh. I., Zubov F. I., Cirlin G. E., Zhukov A. E., Shchavruk N. V., Pavlov A. Yu., Ponomarev D. S., Klochkov A. N., Khabibullin N. A., Maltsev P. P. The first terahertz quantum-cascade laser fabricated in Russia. Nano- and Microsystem Technology. 2017;19(5): 259–265. https://doi.org/10.17587/nmst.19.259-265

Sheng S. Li. Semiconductor physical electronics. New York: Springer-Verlag; 2006. 708 p. https://doi.org/10.1007/0-387-37766-2

Ünlü H., Horing N. J. M., Dabowski J. Lowdimensional and nanostructured materials and devices. Springer Science LCC; 2015. 674 p. https://doi.org/10.1007/978-3-319-25340-4

Khan S. B., Akhtar K. Photocatalysts: Applications and attributes. IntechOpen; 2019. 143 p. https://doi.org/10.5772/intechopen.75848

Mittova I. Ya., Sladkopevtsev B. V., Mittova V. O. Nanoscale semiconductor and dielectric films and magnetic nanocr ystals - new directions of development of the scientific school of Ya. A. Ugai “Solid state chemistry and semiconductors”. Review. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2021;23(3): 309–336. https://doi.org/10.17308/kcmf.2021.23/3524

Moshnikov V. A., Alexandrova O. A. Nanostructured oxide materials in modern micro-, nano- and optoelectronics. Saint Petersburg: SPbGETU «LETI» Publ.; 2017. 266 p. (In Russ.)

Mittova I. Ya. Influence of the physicochemical nature of chemical stimulators and the way they are introduced into a system on the mechanism of the thermal oxidation of GaAs and InP. Inorganic Materials. 2014;50(9): 874–881. https://doi.org/10.1134/s0020168514090088

Tominа E. V., Mittova I. Ya., Sladkopevtsev B. V., Kostryukov V. F., Samsonov A. A., Tretyakov N. N. Thermal oxidation as a method of formation of nanoscale functional films on AIIIBV semiconductors: chemostimulated influence of metal oxides: overview. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(2): 184–203. (In Russ., abstract in Eng.) https://doi.org/10.17308/kcmf.2018.20/522

Mittova I. Ya., Tomina E. V., Lapenko A. A., Sladkopevtsev B. V. Catalytic action of vanadium and its oxide (V) in the processes of oxidation of AIIIBV semiconductors. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(2): 116–138. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=17881315

Tretyakov N. N., Mittova I. Ya., Sladkopevtsev B. V., Agapov B. L., Pelipenko D. I., Mironenko S. V. Surface morphology, composition, and structure of nanofilms grown on InP in the presence of V2O5. Inorganic Materials. 2015;51(7): 655–660. https://doi.org/10.1134/S002016851507016X

Mittova I. Ya., Sladkopevtsev B. V., Tomina E. V., Samsonov A. A., Tretyakov N. N., Ponomarenko S. V. Preparation of dielectric films via thermal oxidation of MnO2/GaAs. Inorganic Materials. 2018;54(11): 1085–1092. https://doi.org/10.1134/S0020168518110109

Tretyakov N. N., Mittova I. Ya., Sladkopevtsev B. V., Samsonov A. A., Andreenko S. Yu. Effect of a magnetron-sputtered MnO2 layer on the thermal oxidation kinetics of InP and the composition and morphology of the resultant films. Inorganic Materials. 2017; 53: 65–71. https://doi.org/10.1134/S0020168517010174

Mittova I. Ya., Kostryukov V. F., Ilyasova N. A., Sladkopevtsev B. V., Samsonov A. A. Modification of nanoscale thermal oxide films formed on indium phosphide under the influence of tin dioxide. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(1): 110–116. https://doi.org/10.17586/2220-8054-2020-11-1-110-116

Bersirova O. L., Bruk L. I., Dikusar A. I., Karaman M. I., Sidelnikova S. P., Simashkevich A.V., Sherban D. A., Yapontseva Yu. S. Thin films of titanium and tin oxides and semiconductor structures on their basis obtained by pyrolytic pulverization: Preparation, characterization, and corrosion properties. Surface Engineering and Applied Electrochemistry. 2007;43(6): 443-452. https://doi.org/10.3103/S1068375507060075

Diebold U. The surface science of titanium dioxide. Surface Science Reports. 2003;48(5-8): 53-229. https://doi.org/10.1016/S0167-5729(02)00100-0

Khoroshikh V. M., Bilous V. A. Titanium dioxide films for photocatalysis and medicine. FIP FIP PSE. 2009;7(3): 223-238. (In Russ.) Available at:

http://dspace.nbuv.gov.ua/bitstream/handle/123456789/7978/07-Khoroshikh.pdf?sequence=1

Sangwal K. Etching of crystals: Theory, experiment, a. application. Amsterdam: North-Holland Physics Publishing; 1987. 496 p.

Acosta D. R., Martínez A., Magaña C. R., Ortega J. M. Electron and Atomic Force Microscopy studies of photocatalytic titanium dioxide thin films deposited by DC magnetron sputtering. Thin Solid Films. 2005;490(2): 112–117. https://doi.org/doi:10.1016/j.tsf.2005.04.067

Kostryukov V. F., Mittova I. Ya., Shvets V. A., Tomina E. V., Sladkopevtsev B. V., Tret’yakov N. N. Spectral ellipsometry study of thin films grown on GaAs by chemically stimulated thermal oxidation. Inorganic Materials. 2014;50(9): 882–887. https://doi.org/10.1134/S0020168514090052

Shvets V. A., Rykhlitskii, S. V., Mittova, I. Yа., Tomina E. V. Analysis of the optical and structural properties of oxide films on InP using spectroscopic ellipsometry. Technical Physics. 2013;58: 1638–1645. https://doi.org/10.1134/S1063784213110248

Spesivtsev E. V., Rykhlitskii S. V., Shvets V. A. Development of methods and instruments for optical ellipsometry at the Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences. Optoelectronics Instrumentation and Data Processing. 2011;47(5): 419-425. https://doi.org/10.3103/S8756699011050219

Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: John Wiley; 1986. 479 p.

Vorobyev N. I. Atlas of infrared spectra of phosphates. Double condensed phosphates. Minsk: Foundation for Fundamental Research Publ.; 1993. 250 p. (In Russ.)

Published
2022-03-15
How to Cite
Kovaleva, A. S., Sladkopevtsev, B. V., Samsonov, A. A., Alferova, S. I., Kovalev, D. G., Titov, S. A., Priakhin, N. D., & Mittova, I. Y. (2022). The influence of the physicochemical nature of the components of the V2O5/GaAs, MnO2/GaAs, V2O5/InP, MnO2/InP, TiO2/InP, and SnO2/InP heterostructures and the oxidation conditions on the surface morphology of the synthesised films. Condensed Matter and Interphases, 24(1), 33-44. https://doi.org/10.17308/kcmf.2022.24/9053
Section
Original articles