Фазовые диаграммы систем диоксида циркония с оксидами иттрия и скандия
Аннотация
Проанализированы литературные данные по исследованию фазовых равновесий в системах диоксида циркония с оксидами иттрия и скандия. Приведены вероятные схемы низкотемпературных фазовых равновесий в системах ZrO2–Y2O3 и ZrO2–Sc2O3 с учетом третьего закона термодинамики.
Табулированы координаты нонвариантных превращений в этих системах. Признаком неравновесных состояний является наблюдение бездиффузионных процессов упорядочения твердых растворов. Методом модифицированной криоскопии рассчитаны коэффициенты распределения оксидов скандия и иттрия при кристаллизации расплава ZrO2.
Обсуждены возможности существования набора упорядоченных фаз в системе ZrO2–Y2O3 и размытого фазового перехода в кубической модификации диоксида циркония.
Скачивания
Литература
Sabbarao E. C. Zirconia - an overview. In: Proc. First Int Conf.: Science and Technology of Zirconia. Cleveland, Ohio; 1981. p. 1–24.
Fedorov P. P., Yarotskaya, E. G. Zirconium dioxide. Review. Condensed Matter and Interphases. 2021;23(2): 169–187. https://doi.org/10.17308/kcmf.2021.23/3427
Kuzminov Yu. S., Osiko V. V. Fianites*. Moscow: Nauka Publ.; 2001. 280 p. (In Russ.)
Osiko V. V., Borik M. A., Lomonova E. E. Synthesis of refractory materials by skull melting. In: Springer Handbook of Crystal Growth. N.Y.: Springer; 2010. pp. 433–477. https://doi.org/10.1007/978-3-540-74761-1_14
Zhigachev A. O., Golovin Yu. I., Umrikhin A. V., … Dyachek T. A. Ceramic materials based on zirconium dioxide*. Golovin Yu. I. (ed.). Moscow: Tekhnosfera Publ.; 2018. 357 p. (In Russ.)
Kablov E. N. Strategical areas of developing materials and their processing technologies for the period to 2030. Aviation Materials and Technologies. 2012;S: 7–17. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=18084815
Kelly J. R., Denry I. Stabilized zirconia as a structural ceramics: An overview. Dental Materials. 2008;24(3): 289–298. https://doi.org/10.1016/j.dental.2007.05.005
Daou E. E. The zirconia ceramic: strengths and weaknesses. The Open Dentistry Journal. 2014;8(1): 33–42. https://doi.org/10.2174/1874210601408010033
Fedorov P. P., Popov P. A. Principle of equivalency of the disorder sources and heat conductivity of solid. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(1): 148–159. (In Russ., abstract in Eng.). Available at:
https://www.elibrary.ru/item.asp?id=18964066
Haering C., Roosen A., Schichl H., Schnoller M. Degradation of the electrical conductivity in stabilized zirconia system. Part. II: Scandia-stabilized zirconia. Solid State Ionics. 2005;176(3-4): 261–268. https://doi.org/10.1016/j.ssi.2004.07.039
Fergus J. F. Electrolytes for solid oxide fuel cells. Journal of Power Sources. 2006;162: 30–40. https://doi.org/10.1016/j.jpowsour.2006.06.062
Mahato N., Banerjee A., Gupta A., Omar S., Balani K. Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science. 2015;72: 141–337. https://doi.org/10.1016/j.pmatsci.2015.01.001
Borik M. A., Bredikhin S. I., Kulebyakin A. V., … Tabachkova N. Yu. Melt growth, structure and properties of (ZrO2)1-x(Sc2O3)x solid solution crystals. Journal of Crystal Growth. 2016;443: 54–61. https://doi.org/10.1016/j.jcrysgro.2016.03.004
Clarke D. R., Phillpot S. R. Thermal barrier coatings. Materials Today. 2005;8(6): 22–29. https://doi.org/10.1016/S1369-7021(05)70934-2
Zhang H., Liu Zh., Yang X., Xie H. Interface failure behavior of YSZ thermal barrier coatings during thermal shock. Journal of Alloys and Compounds. 2019;779: 686–697. https://doi.org/10.1016/j.jallcom.2018.11.311
Degueldre C. Zirconia inert matrix for plutonium utilisation and minor actinides disposition in reactors. Journal of Alloys and Compounds. 2007;444-445: 36–41. https://doi.org/10.1016/j.jallcom.2006.11.203
Andrievskaya E. R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. Journal of the European Ceramic Society. 2008;28(12): 2363–2388. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
Andrievskaya E. R. Phase equilibrium in systems of hafnium, zirconium, yttrium oxides with oxides of rare earth elements*. Kyiv: Naukova Dumka Publ.; 2010. (In Russ.)
Fedorov P. P. Determination of the annealing duration in the study of phase equilibrium in the solid state of binary systems*. Russian Journal of Inorganic Chemistry. 1992;37(8): 1891–1894. (In Russ.)
Fedorov P. P. Third law of thermodynamics as applied to phase diagrams. Russian Journal of Inorganic Chemistry. 2010;55: 1722–1739. https://doi.org/10.1134/S0036023610110100
Fedorov P. P., Alexandrov A. A., Voronov V. V., Mayakova M. N., Baranchikov A. E., Ivanov V. K. Lowtemperature phase formation in the SrF2–LaF3 system. Journal of the American Ceramic Society. 2021;104(6): 2836–2848. https://doi.org/10.1111/jace.17666
Fedorov, P. P., Chernova, E. V. The conditions for the solid state synthesis of solid solutions in zirconia and hafnia systems with the oxides of rare earth elements. Condensed Matter and Interphases. 2022;24(4): 537–544. https://doi.org/10.17308/kcmf.2022.24/10558
Sakka Y., Oishi Y., Ando K. Zr-Hf interdiffusion in polycrystalline Y2O3–(Zr+Hf)O2. Journal of Materials Science. 1982;17: 3101–3105. https://doi.org/10.1007/bf01203471
Yashima M., Ishizawa N., Nama T., Yoshimura M. Stable and metastable phase relationships in the system ZrO2-ErO1.5. Journal of the American Ceramic Society. 1991; 74(3): 510–513. https://doi.org/10.1111/j.1151-2916.1991.tb04052.x
Yashima M., Kakihana M., Yoshimura M. Metastable-stable phase diagrams in the zirconiacontaining systems utilized in solid-oxide fuel cell application. Solid State Ionics. 1996;86: 1131–1149. https://doi.org/10.1016/0167-2738(96)00386-4
Duran P. The system erbia – zirconia. Journal of the American Ceramic Society. 1977;60: 510–513. https://doi.org/10.1111/j.1151-2916.1977.tb14095.x
Roy R. Aids in hydrothermal experimentation: II, Method of making mixtures for both “dry” and “wet” phase equilibrium studies. Journal of the American Ceramic Society. 1956;39(4): 145–146. https://doi.org/10.1111/j.1151-2916.1956.tb14180.x
Fedorov P. P., Nazarkin M. V., Zakalyukin R. M. On polymorphism and morphotropism of rare-earth sesquioxides. Crystallography Reports. 2002;47(2): 281–286. https://doi.org/10.1134/1.1466504
Almjasheva O. V., Smirnov A. V., Fedorov B. A., Tomkovich M. V., Gusarov V. V. Structural features of ZrO2-Y2O3 and ZrO2-Gd2O3 nanoparticles formed under hydrothermal conditions.Russian Journal of General Chemistry. 2014;84(5): 804–809. https://doi.org/10.1134/S1070363214050028
Shuklina A. I., Smirnov A. V., Fedorov B. A., Kirillova S. A., Almjasheva O. V. Structure of nanoparticles in the ZrO2-Y2O3 system, as obtained under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(6): 729. https://doi.org/10.17586/2220-8054-2020-11-6-729-738
Fedorov P. P., Volkov S. N. Au–Cu Phase Diagram. Russian Journal of Inorganic Chemistry. 2016;61: 772–775. https://doi.org/10.1134/S0036023616060061
Fedorov, P.P., Shubin, Y.V. & Chernova, E.V. Copper–Palladium Phase Diagram. Russian Journal of Inorganic Chemistry. 2021;66: 891–893. https://doi.org/10.1134/S0036023621050053
Fedorov P. P., Popov A. A., Shubin Yu. V., Chernova E. V. Phase diagram of the nickel-platinum system*. Russian Journal of Inorganic Chemistry. 2022;67(12): 1805–1809. (In Russ.). https://doi.org/10.31857/S0044457X22600748
Abriata J. P., Laughlin D. E. The third law of thermodynamics and low temperature phase stability. Progress in Materials Science. 2004;49: 367–387. https://doi.org/10.1016/s0079-6425(03)00030-6
Hume-Rothery W., Raynor G. V. The structure of metals and alloys. London: The Inst. of metals; 1956. 36. Gusarov V. V., Semin E. G., Suvorov S. A. Calculation of thermodynamic parameters of solid solutions based on metal oxides. Russian Journal of Applied Chemistry. 1980;53(8): 1911–1914. (In Russ.)
Voronin G. F. New possibilities for thermodynamic calculation and phase diagram construction of heterogeneous systems. Russian Journal of Physical Chemistry A. 2003:77(10): 1685–1694. Available at: https://www.elibrary.ru/item.asp?id=13425953
Suvorov S. A., Semin E. G., Gusarov V. V. Phasediagrams and thermodynamics of oxide solid solutions. Leningrad: Leningrad University Publ.; 1986. 140 p.
Degtyarev S. A., Voronin G. F. Solution of illposed problems in thermodynamics of phase equilibria. The ZrO2-Y2O3 system. Calphad. 1988;12(1): 73–82. https://doi.org/10.1016/0364-5916(88)90031-4
Degterev S. A., Voronin G. F. Solution of illposed problems of thermodynamics of phase equilibria. I System ZrO2-Y2O3 *. Zhurnal Fizicheskoi Khimii. 1987;61(3): 611–616. (In Russ.)
Zaitseva I. A. , Skolis Yu. Ya. Partial thermodynamic functions of yttrium-oxide in csssolutions of the ZrO2-Y2O3 system*. Zhurnal Fizicheskoi Khimii. 1990;64(1): 251–253. (In Russ.)
Zaitseva I. A. , Dobrokhotova Zh. V. Thermodynamic functions of zirconium oxide in fluorite-like solutions of the ZrO2-Y2O3 system*. Inorganic Materials. 1994;30(7): 955–958. (In Russ.)
Degtyarev S.A., Voronin G.F. Calculation of the phase diagram in the ZrO2-Y2O3 system*. Zhurnal Fizicheskoi Khimii. 1987;61(3): 617–622. (In Russ.)
Du Y., Jin Z., Huang P. Thermodynamic assessment of the ZrO2-YO1.5 system. Journal of the American Ceramic Society. 1991;74: 1569–1577. https://doi.org/10.1111/j.1151-2916.1991.tb07142.x
Jacobson N. S., Liu Z.-K., Kaufman L., Zhang F. Thermodynamic modeling of YO1.5-ZrO2 system. Journal of the American Ceramic Society. 2004;87: 1559–1566. https://doi.org/10.1111/j.1551-2916.2004.01559.x
Chen M., Hallstedt B., Gauckler L. J. Thermodynamic modeling of the ZrO2-YO1.5 system. Solid State Ionics. 2004;170: 255–274. https://doi.org/10.1016/j.ssi.2004.02.017
Duwez P., Brown F.H., Odell F. The zirconiayttria system. Journal of the Electrochemical Society. 1951;98(9): 356–362. https://doi.org/10.1149/1.2778219
Rouanet A. Contribution a l’etude des systems zircon-oxydes des lanthanides au voisinage fe la fusion. Revue Internationale Des Hautes Temperatures et Des Refractaires. 1971;8: 161–180.
Noguchi T., Mizuno M., Yamada T. The liquidus curve of the ZrO2-Y2O3 system as measured by a solar furnace. Bulletin of the Chemical Society of Japan. 1970;43: 2614–2616. https://doi.org/10.1246/bcsj.43.2614
Shevchenko A. V., Tkachenko V. D., Lopato L. M., Ruban A. K., Pasichnyi V. V. A method of determining phase-transition temperatures using solar heating. Soviet Powder Metallurgy and Metal Ceramics. 1986;25(1): 79–82. https://doi.org/10.1007/bf00843028
Pascual C., Duran P. Subsolidus Phase Equilibria and ordering in the system ZrO2-Y2O3. Journal of the American Ceramic Society. 1983;66: 23–28. https://doi.org/10.1111/j.1151-2916.1983.tb09961.x
Stubican V. S., Corman G. S., Hellmann J. R., Sent G. Phase relationships in some ZrO2 system. In: Advanced in Ceramics. N. Clausen, A. Ruhle, A. Heuer (eds.). Columbus: American Ceramic Soc Inc; 1984;12: 96–106.
Gaboriaud R. J., Paumier F., Lacroix B. Disorderorder phase transformation ia a fluorite-related oxide film: in situ diffraction and modeling of the residual stress effects. Thin Solid Films. 2016;601: 84–88. https://doi.org/10.1016/j.tsf.2015.08.030
Fedorov P. P. T-х phase diagrams of binary systems in the condensed state: I. Equilibrium of four phases. Russian Journal of Physical Chemistry. 1999;73(9): 1381-1386.
Thornber M. R., Bevan D. J. M., Graham J. Mixed oxides of the type MO2 fluorite-M2O3. III crystal structures of the intermediate phases Zr5Sc2O15 and Zr3Sc2O12. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 1968;24(9): 1183–1190. https://doi.org/10.1107/s0567740868003948
Thornber M. R., Bevan D. J. M., Summerville E. Mixed oxides of the type MO2 Fluorite-M2O3. V. Phase studies in the systems ZrO2-M2O3 (M = Sc,Yb, Er, Dy). Journal of Solid State Chemistry. 1970;1: 545–553. https://doi.org/10.1016/0022-4596(70)90140-4
Spiridonov F. M., Popova L. N., Popil’skii R. Ya. On the phase relations and electrical conductivity in the system ZrO2-Sc2O3. Journal of Solid State Chemistry. 1970;2(3): 430–438. https://doi.org/10.1016/0022-4596(70)90102-7
Sekiya T., Yamada T., Hayashi H., Noguchi T. High temperature phase in the ZrO2-Sc2O3 system. Nippon Kagaku Kaishi. 1974;9: 1629–1636 (in Japan). https://doi.org/10.1246/nikkashi.1974.1629
Ruh R., Garrrett H. J., Domagala R. F., Patel V. A. The system zirconia-scandia. Journal of the American Ceramic Society. 1977;60(9-10): 399–403. https://doi.org/10.1111/j.1151-2916.1977.tb15521.x
Shevchenko A. V., Maister I. M., Lopato L. M. Interaction in the HfO2-Sc2O3 and ZrO2-Sc2O3 systems at high temperatures. Izvestiya Akademii Nauk SSSR. Neorganicheskie Materialy. 19867:23(8): 1320–1324.
Zyrin A. V., Red’ko V. P., Lopato L. M., Shevchenko A. V. Ordered phases in the ZrO2–Sc2O3 and HfO2–Sc2O3 systems. Izvestiya Akademii Nauk SSSR. Neorganicheskie Materialy. 1987:23(8): 1326–1329.
Lopato L. M., Red’ko V. P., Gerasimyuk G. I., Shevchenko A. V. Synthesis of some REE zirconates (hafnates). Soviet Powder Metallurgy and Metal Ceramics. 1990;29(4): 318–320. https://doi.org/10.1007/bf00797236
Maister I. M., Lopato L. M, Zaitseva Z. A., Shevchenko A. V. Interaction in the ZrO2–Y2O3–Sc2O3 system at 1300–1900 °C. Izvestiya Akademii Nauk SSSR. Neorganicheskie Materialy. 1991;27(11): 2337–2340.
Sheu T.-S., Xu J., Tien T.-Y. Phase relationships in the ZrO2-Sc2O3 and ZrO2-In2O3 systems. Journal of the American Ceramic Society. 1993;76(8): 2027–2032. https://doi.org/10.1111/j.1151-2916.1993.tb08328.x
Fujimori H., Yashima M., Kakihana M., Yoshimura M. Structural changes of scandia-doped zirconia solid solutions: Rietveld analysis and Raman scattering. Journal of the American Ceramic Society. 2005; 81(11): 2885–2893. https://doi.org/10.1111/j.1151-2916.1998.tb02710.x
Fujimori H., Yashima M., Kakihana M., Yoshimura M. b-cubic phase transition of scandia-doped zirconia solid solution: Calorimetry, X-ray diffraction, and Raman scattering. Journal of Applied Physics. 2002; 91: 6493– 6498. https://doi.org/10.1063/1.1471576
Rossell H. J. Crystal structure of some fluoriterelated M7O12 compounds. Journal of Solid State Chemistry. 1976;19(2): 103–111. https://doi.org/10.1016/0022-4596(76)90156-0
Wurst K., Schweda E., Bevan D. J. M., Mohyla J., Wallwork K. S., Hofmann M. Single-crystal structure determination of Zr50Sc12O118. Solid State Sciences. 2003;5: 1491–1497. https://doi.org/10.1016/j.solidstatesciences.2003.09.008
Meyer S., Schweda E., Meta N. J. M., Boysen H., Hoelzel M., Bredow T. Neutron powder diffraction study and DFT calculatuins of the structure of Zr10Sc4O26. Zeitschrift für Kristallographie. 2009;224: 539–543. https://doi.org/10.1524/zkri.2009.1218
Ma C., Beckett J. R., Rossman G. R. Allendeite (Sc4Zr3O12) and hexamolybdenum (Mo, Ru, Fe), two new minerals from an ultrarefractory inclusion from the Allende meteorite. American Mineralogist. 2014;99(4): 654–666. https://doi.org/10.2138/am.2014.4667
Fedorov P. P., Chernova E. V. Distribution coefficients of rare-earth oxides in zirconium dioxide melt crystallization. Inorganic Materials. 2021;57(9): 901–905. https://doi.org/10.1134/s0020168521090089
Fedorov P. P., Turkina T. M., Lyamina O. I., Tarasova E. V., Zibrov I. P., Sobolev B. P. Calculation of impurity distribution coefficients from liquidus curves of binary systems MF2-RF3 *. Vysokochistye veshchestva. 1990;6: 67–72. (In Russ.)
Ivanov S. P., Buchinskaya I. I., Fedorov P. P. Distribution coefficients of impurities in cadmium fluoride. Inorganic Materials. 2000;36(4): 392–396. https://doi.org/10.1007/BF02758088
Chase M. W., Davies C. A., Downey J. R., McDonald R. A., Syverud A. N., Valenzuela E. A. JANAF thermochemical tables. Journal of Physical and Chemical Reference Data. 1982;11(3): 695–940. https://doi.org/10.1063/1.555666
Fedorov P. P., Sobolev B. P. Conditions for the formation of maxima on the fusion curves of solid solutions in salt systems. Russian Journal of Inorganic Chemistry. 1979;24(4): 572–575.
Fedorov P. P. Heterovalent isomorphism and
solid solutions with a variable number of ions in the
unit cell. Russian Journal of Inorganic Chemistry.
;45: S268–S291.
Zinkevich M., Djurovic D., Aldinger F. Thermodynamic modeling of the cerium-oxygen system. Solid State Ionics. 2006;177: 989–1001. https://doi.org/10.1016/j.ssi.2006.02.044
Pascual C., Duran P. Phase equilibria and ordering in the erbia-zirconia system. Journal of Materials Science. 1981;16: 3067–3076. https://doi.org/10.1007/bf00540314
Fedorov P. P., Alexandrov A. A., Voronov V. V., Mayakova M. N., Baranchikov A. E., Ivanov V. K. Lowtemperature phase formation in the SrF2 - LaF3 system. Journal of the American Ceramic Society. 2021;104(6): 2836–2848. https://doi.org/10.1111/jace.17666
Bredig M. A. The order-disorder (l) transition in UO2 and other solids of the fluorite type of structure. Colloq. Inter. CNRS. 1972;205: 183–197.
Fossati P. C. M., Chartier A., Boulle A. Structural aspects of the superionic transition in AX2 compounds with the fluorite structure. Frontiers in Chemistry. 2021; 9: N723507. http://doi. org/10.3389/fchem.2021.723507
Hoekstra H. R., Siegel S., Gallagher X. The uranium-oxygen system at high pressure. Journal of Inorganic and Nuclear Chemistry. 1970;32: 3237–3248. https://doi.org/10.1016/0022-1902(70)80206-8
Cooper M. W. D., Murphy S. T., Rushton M. J. D., Grimes R. W. Thermophysical properties and oxygen transport in the (UxPu1–x)O2 lattice. Journal of Nuclear Materials. 2015;461: 206–214. https://doi.org/10.1016/j.jnucmat.2015.03.024
Annamareddy A., Eapen J. Disordering and dynamic self-organization in stoichiometric UO2 at high temperatures. Journal of Nuclear Materials. 2017;463: 132–141. https://doi.org/10.1016/j.jnucmat.2016.10.042
Annamareddy A., Eapen J. Low dimensional string-like relaxation underpins superionic conduction in fluorites and related structures. Scientific Reports. 2017; 7:44149. https://doi.org/10.1038/srep44149
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.