Формирование плазмон-экситонных наноструктур на основе квантовых точек и наночастиц металлов с нелинейно-оптическим откликом
Аннотация
Актуальной задачей является установления условий формирования наноструктур с плазмон-экситонным взаимодействием на основе квантовых точек и плазмонных наночастиц, обеспечивающих уникальные нелинейно-оптические свойства. В работе продемонстрировано формирование плазмон-экситонных наноструктур на основе гидрофильных коллоидных квантовых точек Zn0.5Cd0.5S, Ag2S и наночастиц металлов.
Методами просвечивающей электронной микроскопии и оптической спектроскопии поглощения и люминесценции выполнено обоснование формирования плазмон-экситонных гибридных наноструктур. Фазовый состав исследуемых образцов определяли методом рентгеновской дифракции, результаты полученные на дифрактометре ARLX’TRA (Швейцария), свидетельствуют о кубической кристаллической структуре (F43m) синтезированных квантовых точек Zn0.5Cd0.5S и моноклинной (P21/C) кристаллической решетке Ag2S. Методами просвечивающей электронной микроскопии обнаружено, что плазмонные наночастицы являются центрами адсорбции для квантовых
точек. Определены средние размеры исследуемых образцов коллоидных квантовых точек Ag2S (2.6 нм), Zn0.5Cd0.5S (2.0 нм) и наночастиц металлов: наносферы серебра (10 нм), наностержни золота (4×25 нм). В смесях квантовых точек и плазмонных наночастиц установлена трансформация спектров экстинкции света смесей и тушение люминесценции квантовых точек. Методом Z-сканирования на длинах волн 355 нм и 532 нм в поле наносекундных лазерных импульсов определены нелинейно-оптические параметры исследуемых образцов. Найдены условия формирования гибридных наноструктур, обеспечивающие увеличение до 9 раз коэффициента нелинейного поглощения лазерных импульсов (355 нм и 532 нм) длительностью 10 нс за счет обратного насыщающегося поглощения, происходящего вследствие каскадных двухквантовых переходов на собственных и локальных состояниях коллоидных квантовых точек и подавление нелинейной рефракции.
Наблюдаемые изменения объяснены проявлением эффекта Перселла на состояниях квантовых точек в присутствии нанорезонаторов (наностержней золота и серебряных наносфер). Результаты данных исследований создают новые возможности для разработки оригинальных систем управления интенсивностью лазерного излучения, а также квантовых сенсоров нового поколения.
Скачивания
Литература
Cao E., Lin W., Sun M., Liang W., Song Yi. Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics. 2018;7(1): 145–167. https://doi.org/10.1515/nanoph-2017-0059
Ke L., Katsnelson M. I. Electron correlation effects on exchange interactions and spin excitations in 2D van der Waals materials. npj Computational Materials. 2021;7(4): 1–8. https://doi.org/10.1038/s41524-020-00469-2
De Vera P., Abril I., Garcia-Molina R. Excitation and ionisation cross-sections in condensed-phase biomaterials by electrons down to very low energy: application to liquid water and genetic building blocks. Physical Chemistry Chemical Physics. 2021;23: 5079–5095. https://doi.org/10.1039/d0cp04951d
Yadav R. K., Aneesh J., Sharma R., … Adarsh K. V. Designing hybrids of graphene oxide and gold nanoparticles for nonlinear optical response. Physical Revied Applied. 2008;9(4): 044043(10). https://doi.org/10.1103/PhysRevApplied.9.044043
Davoodi F., Talebi N. Plasmon-exciton interactions in nanometer-thick gold-WSe2 multilayer structures: implications for photodetectors, sensors, and light-emitting devices. ACS Applied Nano Materials. 2021;4(6): 6067–6074. https://doi.org/10.1021/acsanm.1c00889
Kholmicheva N., Royo Romero L., Cassidy J., Zamkov M. Prospects and applications of plasmon-exciton nteractions in the near-field regime. Nanophotonics. 2019;8(4): 613–628. https://doi.org/10.1515/nanoph-2018-0143
Hu S., Ren Y., Wang Y., … Tang Y. Surface plasmon resonance enhancement of photoluminescence intensity and
bioimaging application of gold nanorod@CdSe/ZnS quantum dots. Beilstein Journal of Nanotechnology, 2019;10: 22–31. https://doi.org/10.3762/bjnano.10.3
Danilov V. V., Panfutova A. S., Khrebtov A. I., Ambrosini S., Videnichev D. A. Optical limiting as result a of photoinduced electron transfer in hybrid systems with CdSe/ZnS quantum dots, C60, and Perylene. Optics Letters. 2012;37(19): 3948–3950. https://doi.org/10.1364/OL.37.003948
Zvyagin A. I., Perepelitsa A. S., Ovchinnikov O. V., Smirnov M. S., Ganeev R. A. Nonlinear optical properties of associates of erythrosine molecules and gold nanoparticles. Materials Research Express. 2019;6: 1150c8. https://doi.org/10.1088/2053-1591/ab4e2a
Ovchinnikov O. V., Smirnov M. S., Chevychelova T. A., Zvyagin A. I., Selyukov A. S. Nonlinear absorption enhancement of Methylene Blue in the presence of Au/SiO2 core/shell nanoparticles. Dyes and Pigments. 2022;197: 109829. https://doi.org/10.1016/j.dyepig.2021.109829
Jana N. R., Gearheart L., Murphy C. J. Seedmediated growtha for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials. 2001;13(18): 1389–1393. https://doi.org/10.1002/1521-4095(200109)13:18<1389::aid-adma1389>3.0.co;2-f
Frank A. J., Cathcart N., Maly K. E., Kitaev V. Synthesis of silver nanoprisms with variable size and investigation of their optical properties: a first-year undergraduate experiment exploring plasmonic nanoparticles. Journal of Chemical Education, 2010;87(10): 1098–1101. https://doi.org/10.1021/ed100166g
Sheik-Bahae M., Hutchings D. C., Hagan D. J., Van Stryland E. W. Dispersion of bound electron nonlinear refraction in solids. IEEE Journal of Quantum Electronics. 1991;27: 1296-1309, https://doi.org/10.1109/3.89946
Amendola V., Pilot R., Frasconi M., Marago O. M, Iati M. A. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Mat ter. 2017; 29: 203002 (48). https://doi.org/10.1088/1361-648X/aa60f3
Grevtseva I. G. , Chev ychelova T. A. , Derepko V. N., Ovchinnikov O. V., Smirnov M. S., Perepelitsa A. S., Parshina A. S. Spectral manifestations of the exciton-plasmon interaction of Ag2S quantum dots with silver and gold nanoparticles. Condensed Matter and Interphases. 2021;23(1): 25–31. https://doi.org/10.17308/kcmf.2021.23/3294
Daniel M. C., Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-sizerelated properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews. 2004;104(1): 293–346. https://doi.org/10.1021/cr030698+
Durach M., Rusina A., Stockman M. I., Nelson K. Toward full spatiotemporal control on the nanoscale. Nano Letters. 2007;7(10): 3145–3149. https://doi.org/10.1021/nl071718g
Komarala V. K., Rakovich Yu. P., Bradley A. L. Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots. Applied Physics Letters. 2006; 89(25): 253118. https://doi.org/10.1063/1.2422906
Gong H. M., Wang X. H., Du Y. M., Wang Q. Q. Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots. The Journal of Chemical Physics. 2006;125(2): 024707. https://doi.org/10.1063/1.2212400
Ovchinnikov O. V., Smirnov M. S., Grevtseva I. G., … Kondratenko T. S. Luminescent properties of colloidal mixtures of Zn0.5Cd0.5S quantum dots and gold nanoparticles. Condensed Matter and Interphases. 2021;23(1): 49–55. https://doi.org/10.17308/kcmf.2021.23/3302
Ganeev R. A., Ryasnyansky A. I., Tugushev R. I., Usmanov T. Investigation of nonlinear refraction and nonlinear absorption of semiconductor nanoparticle solutions prepared by laser ablation. Journal of Optics A: Pure and Applied Optics 2003;5(4): 409–417. https://doi.org/10.1088/1464-4258/5/4/317
Chang Q., Gao Y., Liu X., Chang C. Nonlinear properties of water-soluble Ag2S and PbS quantum dots under picosecond laser pulses. IOP Conference Series: Earth and Environmental Science. 2018;186(4): 012076. https://doi.org/10.1088/1755-1315/186/4/012076
Kondratenko T. S., Zvyagin A. I., Smirnov M. S., Grevtseva I. G., Perepelitsa A. S., Ovchinnikov O. V. Luminescence and nonlinear optical properties of colloidal Ag2S quantum dots. Journal of Luminescence. 2019;208: 193–200. https://doi.org/10.1016/j.jlumin.2018.12.042
Zvyagin A. I., Chevychelova T. A., Chirkov K. S., Smirnov M. S., Ovchinnikov O. V. Nonlinear optical properties of colloidal PbS and Ag2S quantum dots passivated with 2-mercaptopropionic acid. Bulletin of the Russian Academy of Sciences: Physics. 2022;86: 1183–1187. https://doi.org/10.3103/S1062873822100264
Smirnov M. S., Ovchinnikov O. V., Zvyagin A. I., … Pham H. M. Transient absorption dynamics and nonlinear optical response in colloidal Ag2S quantum dots. Optics and Spectroscopy. 2022;130(3): 224–231. https://doi.org/10.1134/S0030400X22030146
Chevychelova T. A., Zvyagin A. I., Perepelitsa A. S., Ovchinnikov O. V., Smirnov M. S., Selyukov A. S. Role of photoinduced destruction of gold nanorods in the formation of nonlinear optical response. Optik. 2022;250(2): 168352, https://doi.org/10.1016/j.ijleo.2021.168352
Liu X., Guo S., Wang H., Hou L. Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption. Optics Communications. 2001;197(4-6): 431–437. https://doi.org/10.1016/s0030-4018(01)01406-7
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.