Получение композитных микро- и нановолокон на основе наноразмерного магнетита методом электроформования

  • Роман Павлович Якупов ФГБОУ ВО «Кубанский государственный университет», ул. Ставропольская, 149, Краснодар 350040, Российская Федерация https://orcid.org/0000-0002-8872-1640
  • Владимир Юрьевич Бузько ФГБОУ ВО «Кубанский государственный университет», ул. Ставропольская, 149, Краснодар 350040, Российская Федерация; ФГБОУ ВО «Кубанский государственный технологический университет», ул. Московская, 2, Краснодар 350072, Российская Федерация; ФГБОУ ВО «Кубанский государственный аграрный университет им. И. Т. Трубилина», ул. Калинина 13, Краснодар, 350044, Российская Федерация https://orcid.org/0000-0002-6335-0230
  • Сергей Николаевич Иванин ФГБОУ ВО «Кубанский государственный университет», ул. Ставропольская, 149, Краснодар 350040, Российская Федерация; ФГБОУ ВО «Кубанский государственный аграрный университет им. И. Т. Трубилина», ул. Калинина 13, Краснодар, 350044, Российская Федерация https://orcid.org/0000-0001-9352-5970
  • Марина Владимировна Папежук ФГБОУ ВО «Кубанский государственный университет», ул. Ставропольская, 149, Краснодар 350040, Российская Федерация https://orcid.org/0000-0001-8187-9819
Ключевые слова: наноразмерный магнетит, электроформование, композитное волокно, структурные характеристики, магнитные материалы, радиопоглощение

Аннотация

Композитные материалы с магнитным наполнителем играют важную роль в ряде отраслей от функциональных покрытий в электронике до радиопоглощающих, радиоэкранирующих материалов. Важной особенностью является подбор магнитного наноразмерного наполнителя, не приводящего к усиленной деградации полимерного связующего, и подбор полимера, обеспечивающего атмосферостойкость нанокомпозитного материала. В данной работе исследованы композитные образцы микро- и нановолокон на основе изготовленных частиц наноразмерного магнетита (Fe3O4) в качестве радиопоглощающего дешевого материала.

Магнитные полимерно-диэлектрические волокна полистирол-Fe3O4 были получены методом электроформования. Анализ рентгенограммы показал, что синтезированные наночастицы Fe3O4 имеют кубическую структуру пространственной группы Fd3m с параметром кристаллической решетки a = 8.422±0.026 Å. Анализ спектра ферромагнитного резонанса показал ферромагнитную природу полученных наночастиц магнетита. Показано, что при изготовлении композитных волокон методом электроформования в состав формовочного раствора может быть включена дисперсия порошка наноразмерного магнетита, что в результате процесса электроформования позволяет получить
магнитные композитные микро- и нановолокна. Средний размер включенных частиц магнетита составил 15±3 нм.

Полученный нетканый магнитный материал преимущественно состоит из волокон двух типов со средним диаметром 680 ± 280 нм и более крупных ассоциированных волокон диаметром 1500±300 нм. По определенной частотной зависимости величины потерь при отражении RL в диапазоне частот 15 МГц – 7.0 ГГц синтезированный волокнистый материал можно рассматривать в качестве эффективного радиопоглощающего материала

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Роман Павлович Якупов, ФГБОУ ВО «Кубанский государственный университет», ул. Ставропольская, 149, Краснодар 350040, Российская Федерация

аспирант кафедры общей, неорганической химии и ИВТ в химии, Кубанский государственный университет (Краснодар, Российская Федерация)

Владимир Юрьевич Бузько, ФГБОУ ВО «Кубанский государственный университет», ул. Ставропольская, 149, Краснодар 350040, Российская Федерация; ФГБОУ ВО «Кубанский государственный технологический университет», ул. Московская, 2, Краснодар 350072, Российская Федерация; ФГБОУ ВО «Кубанский государственный аграрный университет им. И. Т. Трубилина», ул. Калинина 13, Краснодар, 350044, Российская Федерация

к. х. н., доцент кафедры радиофизики и нанотехнологий, Кубанский государственный университет, Кубанский государственный аграрный университет им. И.Т. Трубилина (Краснодар, Российская Федерация)

Сергей Николаевич Иванин, ФГБОУ ВО «Кубанский государственный университет», ул. Ставропольская, 149, Краснодар 350040, Российская Федерация; ФГБОУ ВО «Кубанский государственный аграрный университет им. И. Т. Трубилина», ул. Калинина 13, Краснодар, 350044, Российская Федерация

к. х. н., преподаватель кафедры радиофизики и нанотехнологий, Кубанский государственный университет, Кубанский государственный аграрный университет им. И.Т. Трубилина (Краснодар, Российская Федерация)

Марина Владимировна Папежук, ФГБОУ ВО «Кубанский государственный университет», ул. Ставропольская, 149, Краснодар 350040, Российская Федерация

преподаватель кафедры общей, неорганической химии и ИВТ в химии, Кубанский государственный университет (Краснодар, Российская Федерация)

Литература

Mittal А., Roy I., Gandhi S. Magnetic nanoparticles: An overview for biomedical applications. agnetochemistry. 2022;8(9): 107. https://doi.org/10.3390/magnetochemistry8090107

Zargar T., Kermanpur A. Effects of hydrothermal process parameters on the physical, magnetic and thermal properties of Zn0.3Fe2.7O4 nanoparticles for magnetic hyperthermia applications. Ceramics International. 2017;43: 5794–5804. https://doi.org/10.1016/j.ceramint.2017.01.127

Sulaiman N. H., Ghazali M. J., Majlis B. Y., Yunas J., Razali M. Superparamagnetic calcium ferrite nanoparticles synthesized using a simple solgel method for targeted drug delivery. Bio-Medical Materials and Engineering. 2015;26: S103–S110. https://doi.org/10.3233/bme-151295

Li X., Li W., Wang M., Liao Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects. Journal of Controlled Release. 2021;335: 437–448. https://doi.org/10.1016/j.jconrel.2021.05.042

Jiao W., Zhang T., Peng M., Yi J., He Y., Fan H. Design of magnetic nanoplatforms for cancer theranostics. Biosensors. 2022;12(1): 38. https://doi.org/10.3390/bios12010038

Rocha-Santos T. A. P. Sensors and biosensors based on magnetic nanoparticles. TrAC Trends in Analytical Chemistry. 2014;62: 28–36. https://doi.org/10.1016/j.trac.2014.06.016

Chen Y. T., Kolhatkar A. G., Zenasni O., Xu S., Lee T. R. Biosensing using magnetic particle detection techniques. Sensors. 2017;17(10): 2300. https://doi.org/10.3390/s17102300

Avasthi A., Caro C., Pozo-Torres E., Leal M. P., García-Martín M. L. Magnetic nanoparticles as MRI contrast agents. Topics in Current Chemistry. 2020;378: 40. https://doi.org/10.1007/s41061-020-00302-w

Ivanin S. N., Вuz’ko V. Y., Panyushkin V. T. Research of the properties of gadolinium stearate by EPR Spectroscopy. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya. 2021;47(3): 219–224. doi:10.1134/S1070328421030027

Narmani A., Farhood B., Haghi-Aminjan H., … Abbasi H. Gadolinium nanoparticles as diagnostic and therapeutic agents: Their delivery systems in magnetic resonance imaging and neutron capture therapy. Journal of Drug Delivery Science and Technology. 2018;44: 457–466. https://doi.org/10.1016/j.jddst.2018.01.011

Goryachko A. I., Ivanin S. N., Buz’ko V. Yu. Synthesis, microstructural and electromagnetic characteristics of cobalt-zinc ferrite. Condensed Matter and Interphases. 2020;22(4): 446–452. https://doi.org/10.17308/kcmf.2020.22/3115

Bhingardive V., Woldu T., Biswas S., … Bose S. Microwave absorption in MWNTs-based soft composites containing nanocrystalline particles as magnetic core and intrinsically conducting polymer as a conductive layer. Chemistry Select. 2016;1: 4747–4752. https://doi.org/10.1002/slct.201601056

Lai T., Qin W., Cao C., Zhong R., Ling Y., Xie Y. Preparation of a microwave-absorbing UV coating using a BaFe12O19-polypyrrole nanocomposite filler. Polymers. 2023;15(8): 1839. https://doi.org/10.3390/polym15081839

Buzko V., Babushkin M., Ivanin S., Goryachko A., Petriev I. Study of electromagnetic shielding properties of composites based on glass fiber metallized with metal films. Coatings. 2022;12(8): 1173. https://doi.org/10.3390/coatings12081173

Ehrmann G., Blachowicz T., Ehrmann A. Magnetic 3D-printed composites–production and applications. Polymers. 2022;14(18): 3895. https://doi.org/10.3390/polym14183895

Buzko V., Ivanin S., Goryachko A., Shutkin I., Pushankina P., Petriev I. Magnesium spinel ferrites development for FDM 3D-printing material for microwave absorption. Processes. 2023;11: 60. https://doi.org/10.3390/pr11010060

Haiduk Yu. S., Korobko E. V., Shevtsova K. A., … Pankov V. V. Synthesis, structure, and magnetic properties of cobalt-zinc nanoferrite for magnetorheological liquids. Condensed Matter and Interphases. 2020;22(2): 28–82. https://doi.org/10.17308/kcmf.2020.22/2526

Vaseem M., Ghaffar F. A., Farroqui M. F., Shamim A. Iron oxide nanoparticle-based magnetic ink development for fully printed tunable radio-frequency devices. Advanced Materials Technologies. 2018;3:1700242. https://doi.org/10.1002/admt.201700242

Korsakova A. S., Kotsikau D. A., Haiduk Yu. S., Pankov V. V. Synthesis and physicochemical properties of MnxFe3-xO4 solid solutions. Condensed Matter and Interphases. 2020;22(4): 466–472. https://doi.org/10.17308/kcmf.2020.22/3076

Shauo C.-N., Chao C.-G., Wu T. M., Shy H.-J. Magnetic and optical properties of isolated magnetite nanocrystals. Materials Transactions. 2007;48(5): 1143–1148. https://doi.org/10.2320/matertrans.48.1143

Urbanova V., Magro M., Gedanken A., Baratella D., Vianello F., Zboril R. Nanocrystalline iron oxides, composites and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chemistry of Materials. 2014;26(23): 6653–6673. https://doi.org/10.1021/cm500364x

Liu M., Ye Y., Ye J., … Song Z. Recent advances of magnetite (Fe3O4)-based magnetic materials in catalytic applications. Magnetochemistry. 2023; 9(4): 110. https://doi.org/10.3390/magnetochemistry9040110

Goryachko A. I., Ivanin S. N., Buz’ko V. Y. Study of electrodynamic parameters of composite materials based on natural Fe3O4. Journal of Radio Electronics. 2020;7. https://doi.org/10.30898/1684-1719.2020.7.4

Tanaka K., Ishii J., Katayama T. Influence of magnetite dispersion on tensile properties of magnetite/PLA nanofiber nonwoven fabrics. Key Engineering Materials. 2019;827: 190–195. https://doi.org/10.4028/www.scientific.net/KEM.827.190

Chowdhury T., D’Souza N., Berman D. Electrospun Fe3O4-PVDF nanofiber composite mats for cryogenic magnetic sensor applications. Textiles. 2021; 1: 227-238. https://doi.org/10.3390/textiles1020011

Mamun A., Klöcker M., Blachowicz T. Sabantina L. Investigation of the morphological structure of needle-free electrospun magnetic nanofiber mats. Magnetochemistry. 2022;8(2): 25. https://doi.org/10.3390/magnetochemistry8020025

Mansurov Z. A., Smagulova G. T., Kaidar B. B., Lesbayev A. B., Imash A. Production of fibers based on polyacrylonitrile with magnetite nanoparticles. Powder Metallurgy and Functional Coatings. 2021;15(4): 68–76. (In Russ.). https://doi.org/10.17073/1997-308x-2021-4-68-76

Kildisheva V. A., Velikanov I. S., Andreev A. A. Synthesis of composite structures with magnetite nanoparticles included in calcium carbonate microparticles. Trends in the development of science and education. 2021;72(2): 155–158. (In Russ.). https://doi.org/10.18411/lj-04-2021-80

Teng Y., Li Yu., Li Y., Song Q. Preparation of Fe3O4/PVP magnetic nanofibers via in situ method with electrospinning. Journal of Physics: Conference Series. 2020;1549: 032087. https://doi.org/10.1088/1742-6596/1549/3/032087

Gu H., Huang Y., Zhang X., … Guo Z. Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer. 2012;53: 801–809. https://doi.org/10.1016/j.polymer.2011.12.033

Guo J., Gu H., Wei H., … Guo Z. Magnetite−polypyrrole metacomposites: Dielectric properties and magnetoresistance behavior. The Journal of Physical Chemistry C. 2013;117: 10191−10202. https://doi.org/10.1021/jp402236n

Tahmasebipour M. , Paknahad A. A. Unidirectional and bidirectional valveless electromagnetic micropump with PDMS-Fe3O4 nanocomposite magnetic membrane. Journal of Micromechanics and Microengineering. 2019;29(7): 075014. https://doi.org/10.1088/1361-6439/ab1dbe

Chiscan O., Dumitru I., Postolache P., Tura V., Stancu A. Electrospun PVC/Fe3O4 composite nanofibers for microwave absorption applications. Materials Letters. 2012;68: 251–254. https://doi.org/10.1016/j.matlet.2011.10.084

Zhang T., Huang D., Yang Y., Kang F., Gu J. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Materials Science and Engineering: B. 2013. 178(1): 1– 9. https://doi.org/10.1016/j.mseb.2012.06.005

Samadi A., Hosseini S. M., Mohseni M. Investigation of the electromagnetic microwaves absorption and piezoelectric properties of electrospun Fe3O4-GO/PVDF hybrid nanocomposites. Organic Electronics. 2018:59: 149–155. https://doi.org/10.1016/j.orgel.2018.04.037

Petriev I., Pushankina P., Shostak N., Baryshev M. Gas-transport characteristics of PdCu- Nb-PdCu membranes modified with nanostructured palladium coating. International Journal of Molecular Science. 2022;23(1): 228. https://doi.org/10.3390/ijms23010228

Petriev I. S., Pushankina P. D., Lutsenko I. S., Baryshev M. G. Anomalous kinetic characteristics of hydrogen transport through Pd–Cu membranes modified by pentatwinned flower-Sshaped palladium nanocrystallites with high-index facets. Technical Physics Letters. 2021;47(11): 803–806. https://doi.org/10.1134/s1063785021080216

Martínez-Mera I., Espinosa-Pesqueira M. E., Pérez-Hernández R., Arenas-Alatorre J. Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Materials Letters. 2007;61: 4447–4451. https://doi.org/10.1016/j.matlet.2007.02.018

Zhao Y., Qiu Z., Huang J. Preparation and analysis of Fe3O4 magnetic nanoparticles used as targeted-drug carriers. Chinese Journal of Chemical Engineering. 2008;16(3): 451–455. https://doi.org/10.1016/s1004-9541(08)60104-4

Wang P., Shi T., Mehta N., … Zhu Z. Changes in magnetic properties of magnetite nanoparticles upon microbial iron reduction. Geochemistry, Geophysics, Geosystems. 2022;23(3): e2021GC010212. https://doi.org/10.1029/2021GC010212

He H., Zhong Y., Liang X., Tan W., Zhu J., Wang C. Y. Natural magnetite: an efficient catalyst for the degradation of organic contaminant. Scientific Reports. 2015;5: 10139. https://doi.org/10.1038/srep10139

Fischer A., Schmitz M., Aichmayer B., Fratzl P., Faivre D. Structural purity of magnetite nanoparticles in magnetotactic bacteria. Journal of the Royal Society Interface. 2011;8(60): 1011–1018. https://doi.org/10.1098/rsif.2010.0576

Blaney L. Functionalized magnetite nanoparticles–synthesis, properties, and bio- Applications. The Lehigh Review. 2007;15: 32–81. https://doi.org/10.1080/10408430701776680

Wu S., Sun A., Zhai F., … Volinsky A. A. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Materials Letters. 2011;65: 1882–1884. https://doi.org/10.1016/j.matlet.2011.03.065

Beaudoin É. J., Kubaski M. M., Samara M., Zednik R. J., Demarquette N. R. Scaled-up multi-needle electrospinning process using parallel plate auxiliary electrodes. Nanomaterials. 2022;12(8): 1356. https://doi.org/10.3390/nano12081356

Partheniadis I., Nikolakakis I., Laidmäe I., Heinämäki J. A Mini-review: Needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. Processes. 2020;8(6): 673. https://doi.org/10.3390/pr8060673

Wang X., Niu H., Lin T., Wang X. Needleless electrospinning of nanofibers with a conical wire coil. Polymer Engineering and Science. 2009;49: 1582–1586. https://doi.org/10.1002/pen.21377

Thoppey N. M., Bochinski J. R., Clarke L. I., Gorga R. E. Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer. 2010;51: 4928–4936. https://doi.org/10.1016/j.polymer.2010.07.046

Wu D., Huang X., Lai X., Sun D., Lin L. High throughput tip-less electrospinning via a circular cylindrical electrode. Journal of Nanoscience and Nanotechnology. 2010;10: 4221–4226. https://doi.org/10.1166/jnn.2010.2194

Ahmad A., Ali U., Nazir A., … Abid S. Toothed wheel needleless electrospinning: A versatile way to fabricate uniform and finer nanomembrane. Journal of Materials Science. 2019;54: 13834–13847. https://doi.org/10.1007/s10853-019-03875-0

Kara Y., He H., Molnár K. Shear-aided highthroughput electrospinning: A needleless method with enhanced jet formation. Journal of Applied Polymer Science. 2020;137: e49104. https://doi.org/10.1002/app.49104

Chiscan O., Dumitru I., Postolache P., TuraV., Stancu A. Electrospun PVC/Fe3O4 composite nanofibers for microwave absorption applications. Materials Letters. 2012;68: 251–254. https://doi.org/10.1016/j.matlet.2011.10.084

Mashuri X., Lestari W., Triwikantoro X., Darminto X. Preparation and microwave absorbing properties in the X-band of natural ferrites from iron sands by high energy milling. Materials Research Express. 2018; 5(1): 014003. https://doi.org/10.1088/2053-1591/aa68b4

Liu X., Cao K., Chen Y., … Peng D. L. Shapedependent magnetic and microwave absorption properties of iron oxide nanocrystals. Materials Chemistry and Physics. 2017;192: 339–348. https://doi.org/10.1016/j.matchemphys.2017.02.012

Zhang B., Du Y., Zhang P., … Xu P. Microwave absorption enhancement of Fe3O4/polyaniline core/ shell hybrid microspheres with controlled shell thickness. Journal of Applied Polymer Science. 2013;130(30): 1909–1916. https://doi.org/10.1002/app.39332

Tong G., Wu W., Guan J., Qian H., Yuan J., Li W. Synthesis and characterization of nanosized urchinlike a-Fe2O3 and Fe3O4: Microwave electromagnetic and absorbing properties. Journal of Alloys and Compounds. 2011; 509: 4320–4326. https://doi.org/10.1016/j.jallcom.2011.01.058

Kolev S., Yanev A., Nedkov I. Microwave absorption of ferrite powders in a polymer matrix. Physica Status Solidi c. 2006;3(5): 1308–1315. https://doi.org/10.1002/pssc.200563116

Ni S., Sun X., Wang X., … He D. Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Materials Chemistry and Physics. 2010;124: 353–358. https://doi.org/10.1016/j.matchemphys.2010.06.046

Опубликован
2024-07-12
Как цитировать
Якупов, Р. П., Бузько, В. Ю., Иванин, С. Н., & Папежук, М. В. (2024). Получение композитных микро- и нановолокон на основе наноразмерного магнетита методом электроформования. Конденсированные среды и межфазные границы, 26(3), 547-557. https://doi.org/10.17308/kcmf.2024.26/12230
Раздел
Оригинальные статьи