Получение композитных микро- и нановолокон на основе наноразмерного магнетита методом электроформования
Аннотация
Композитные материалы с магнитным наполнителем играют важную роль в ряде отраслей от функциональных покрытий в электронике до радиопоглощающих, радиоэкранирующих материалов. Важной особенностью является подбор магнитного наноразмерного наполнителя, не приводящего к усиленной деградации полимерного связующего, и подбор полимера, обеспечивающего атмосферостойкость нанокомпозитного материала. В данной работе исследованы композитные образцы микро- и нановолокон на основе изготовленных частиц наноразмерного магнетита (Fe3O4) в качестве радиопоглощающего дешевого материала.
Магнитные полимерно-диэлектрические волокна полистирол-Fe3O4 были получены методом электроформования. Анализ рентгенограммы показал, что синтезированные наночастицы Fe3O4 имеют кубическую структуру пространственной группы Fd3m с параметром кристаллической решетки a = 8.422±0.026 Å. Анализ спектра ферромагнитного резонанса показал ферромагнитную природу полученных наночастиц магнетита. Показано, что при изготовлении композитных волокон методом электроформования в состав формовочного раствора может быть включена дисперсия порошка наноразмерного магнетита, что в результате процесса электроформования позволяет получить
магнитные композитные микро- и нановолокна. Средний размер включенных частиц магнетита составил 15±3 нм.
Полученный нетканый магнитный материал преимущественно состоит из волокон двух типов со средним диаметром 680 ± 280 нм и более крупных ассоциированных волокон диаметром 1500±300 нм. По определенной частотной зависимости величины потерь при отражении RL в диапазоне частот 15 МГц – 7.0 ГГц синтезированный волокнистый материал можно рассматривать в качестве эффективного радиопоглощающего материала
Скачивания
Литература
Mittal А., Roy I., Gandhi S. Magnetic nanoparticles: An overview for biomedical applications. agnetochemistry. 2022;8(9): 107. https://doi.org/10.3390/magnetochemistry8090107
Zargar T., Kermanpur A. Effects of hydrothermal process parameters on the physical, magnetic and thermal properties of Zn0.3Fe2.7O4 nanoparticles for magnetic hyperthermia applications. Ceramics International. 2017;43: 5794–5804. https://doi.org/10.1016/j.ceramint.2017.01.127
Sulaiman N. H., Ghazali M. J., Majlis B. Y., Yunas J., Razali M. Superparamagnetic calcium ferrite nanoparticles synthesized using a simple solgel method for targeted drug delivery. Bio-Medical Materials and Engineering. 2015;26: S103–S110. https://doi.org/10.3233/bme-151295
Li X., Li W., Wang M., Liao Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects. Journal of Controlled Release. 2021;335: 437–448. https://doi.org/10.1016/j.jconrel.2021.05.042
Jiao W., Zhang T., Peng M., Yi J., He Y., Fan H. Design of magnetic nanoplatforms for cancer theranostics. Biosensors. 2022;12(1): 38. https://doi.org/10.3390/bios12010038
Rocha-Santos T. A. P. Sensors and biosensors based on magnetic nanoparticles. TrAC Trends in Analytical Chemistry. 2014;62: 28–36. https://doi.org/10.1016/j.trac.2014.06.016
Chen Y. T., Kolhatkar A. G., Zenasni O., Xu S., Lee T. R. Biosensing using magnetic particle detection techniques. Sensors. 2017;17(10): 2300. https://doi.org/10.3390/s17102300
Avasthi A., Caro C., Pozo-Torres E., Leal M. P., García-Martín M. L. Magnetic nanoparticles as MRI contrast agents. Topics in Current Chemistry. 2020;378: 40. https://doi.org/10.1007/s41061-020-00302-w
Ivanin S. N., Вuz’ko V. Y., Panyushkin V. T. Research of the properties of gadolinium stearate by EPR Spectroscopy. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya. 2021;47(3): 219–224. doi:10.1134/S1070328421030027
Narmani A., Farhood B., Haghi-Aminjan H., … Abbasi H. Gadolinium nanoparticles as diagnostic and therapeutic agents: Their delivery systems in magnetic resonance imaging and neutron capture therapy. Journal of Drug Delivery Science and Technology. 2018;44: 457–466. https://doi.org/10.1016/j.jddst.2018.01.011
Goryachko A. I., Ivanin S. N., Buz’ko V. Yu. Synthesis, microstructural and electromagnetic characteristics of cobalt-zinc ferrite. Condensed Matter and Interphases. 2020;22(4): 446–452. https://doi.org/10.17308/kcmf.2020.22/3115
Bhingardive V., Woldu T., Biswas S., … Bose S. Microwave absorption in MWNTs-based soft composites containing nanocrystalline particles as magnetic core and intrinsically conducting polymer as a conductive layer. Chemistry Select. 2016;1: 4747–4752. https://doi.org/10.1002/slct.201601056
Lai T., Qin W., Cao C., Zhong R., Ling Y., Xie Y. Preparation of a microwave-absorbing UV coating using a BaFe12O19-polypyrrole nanocomposite filler. Polymers. 2023;15(8): 1839. https://doi.org/10.3390/polym15081839
Buzko V., Babushkin M., Ivanin S., Goryachko A., Petriev I. Study of electromagnetic shielding properties of composites based on glass fiber metallized with metal films. Coatings. 2022;12(8): 1173. https://doi.org/10.3390/coatings12081173
Ehrmann G., Blachowicz T., Ehrmann A. Magnetic 3D-printed composites–production and applications. Polymers. 2022;14(18): 3895. https://doi.org/10.3390/polym14183895
Buzko V., Ivanin S., Goryachko A., Shutkin I., Pushankina P., Petriev I. Magnesium spinel ferrites development for FDM 3D-printing material for microwave absorption. Processes. 2023;11: 60. https://doi.org/10.3390/pr11010060
Haiduk Yu. S., Korobko E. V., Shevtsova K. A., … Pankov V. V. Synthesis, structure, and magnetic properties of cobalt-zinc nanoferrite for magnetorheological liquids. Condensed Matter and Interphases. 2020;22(2): 28–82. https://doi.org/10.17308/kcmf.2020.22/2526
Vaseem M., Ghaffar F. A., Farroqui M. F., Shamim A. Iron oxide nanoparticle-based magnetic ink development for fully printed tunable radio-frequency devices. Advanced Materials Technologies. 2018;3:1700242. https://doi.org/10.1002/admt.201700242
Korsakova A. S., Kotsikau D. A., Haiduk Yu. S., Pankov V. V. Synthesis and physicochemical properties of MnxFe3-xO4 solid solutions. Condensed Matter and Interphases. 2020;22(4): 466–472. https://doi.org/10.17308/kcmf.2020.22/3076
Shauo C.-N., Chao C.-G., Wu T. M., Shy H.-J. Magnetic and optical properties of isolated magnetite nanocrystals. Materials Transactions. 2007;48(5): 1143–1148. https://doi.org/10.2320/matertrans.48.1143
Urbanova V., Magro M., Gedanken A., Baratella D., Vianello F., Zboril R. Nanocrystalline iron oxides, composites and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chemistry of Materials. 2014;26(23): 6653–6673. https://doi.org/10.1021/cm500364x
Liu M., Ye Y., Ye J., … Song Z. Recent advances of magnetite (Fe3O4)-based magnetic materials in catalytic applications. Magnetochemistry. 2023; 9(4): 110. https://doi.org/10.3390/magnetochemistry9040110
Goryachko A. I., Ivanin S. N., Buz’ko V. Y. Study of electrodynamic parameters of composite materials based on natural Fe3O4. Journal of Radio Electronics. 2020;7. https://doi.org/10.30898/1684-1719.2020.7.4
Tanaka K., Ishii J., Katayama T. Influence of magnetite dispersion on tensile properties of magnetite/PLA nanofiber nonwoven fabrics. Key Engineering Materials. 2019;827: 190–195. https://doi.org/10.4028/www.scientific.net/KEM.827.190
Chowdhury T., D’Souza N., Berman D. Electrospun Fe3O4-PVDF nanofiber composite mats for cryogenic magnetic sensor applications. Textiles. 2021; 1: 227-238. https://doi.org/10.3390/textiles1020011
Mamun A., Klöcker M., Blachowicz T. Sabantina L. Investigation of the morphological structure of needle-free electrospun magnetic nanofiber mats. Magnetochemistry. 2022;8(2): 25. https://doi.org/10.3390/magnetochemistry8020025
Mansurov Z. A., Smagulova G. T., Kaidar B. B., Lesbayev A. B., Imash A. Production of fibers based on polyacrylonitrile with magnetite nanoparticles. Powder Metallurgy and Functional Coatings. 2021;15(4): 68–76. (In Russ.). https://doi.org/10.17073/1997-308x-2021-4-68-76
Kildisheva V. A., Velikanov I. S., Andreev A. A. Synthesis of composite structures with magnetite nanoparticles included in calcium carbonate microparticles. Trends in the development of science and education. 2021;72(2): 155–158. (In Russ.). https://doi.org/10.18411/lj-04-2021-80
Teng Y., Li Yu., Li Y., Song Q. Preparation of Fe3O4/PVP magnetic nanofibers via in situ method with electrospinning. Journal of Physics: Conference Series. 2020;1549: 032087. https://doi.org/10.1088/1742-6596/1549/3/032087
Gu H., Huang Y., Zhang X., … Guo Z. Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer. 2012;53: 801–809. https://doi.org/10.1016/j.polymer.2011.12.033
Guo J., Gu H., Wei H., … Guo Z. Magnetite−polypyrrole metacomposites: Dielectric properties and magnetoresistance behavior. The Journal of Physical Chemistry C. 2013;117: 10191−10202. https://doi.org/10.1021/jp402236n
Tahmasebipour M. , Paknahad A. A. Unidirectional and bidirectional valveless electromagnetic micropump with PDMS-Fe3O4 nanocomposite magnetic membrane. Journal of Micromechanics and Microengineering. 2019;29(7): 075014. https://doi.org/10.1088/1361-6439/ab1dbe
Chiscan O., Dumitru I., Postolache P., Tura V., Stancu A. Electrospun PVC/Fe3O4 composite nanofibers for microwave absorption applications. Materials Letters. 2012;68: 251–254. https://doi.org/10.1016/j.matlet.2011.10.084
Zhang T., Huang D., Yang Y., Kang F., Gu J. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Materials Science and Engineering: B. 2013. 178(1): 1– 9. https://doi.org/10.1016/j.mseb.2012.06.005
Samadi A., Hosseini S. M., Mohseni M. Investigation of the electromagnetic microwaves absorption and piezoelectric properties of electrospun Fe3O4-GO/PVDF hybrid nanocomposites. Organic Electronics. 2018:59: 149–155. https://doi.org/10.1016/j.orgel.2018.04.037
Petriev I., Pushankina P., Shostak N., Baryshev M. Gas-transport characteristics of PdCu- Nb-PdCu membranes modified with nanostructured palladium coating. International Journal of Molecular Science. 2022;23(1): 228. https://doi.org/10.3390/ijms23010228
Petriev I. S., Pushankina P. D., Lutsenko I. S., Baryshev M. G. Anomalous kinetic characteristics of hydrogen transport through Pd–Cu membranes modified by pentatwinned flower-Sshaped palladium nanocrystallites with high-index facets. Technical Physics Letters. 2021;47(11): 803–806. https://doi.org/10.1134/s1063785021080216
Martínez-Mera I., Espinosa-Pesqueira M. E., Pérez-Hernández R., Arenas-Alatorre J. Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Materials Letters. 2007;61: 4447–4451. https://doi.org/10.1016/j.matlet.2007.02.018
Zhao Y., Qiu Z., Huang J. Preparation and analysis of Fe3O4 magnetic nanoparticles used as targeted-drug carriers. Chinese Journal of Chemical Engineering. 2008;16(3): 451–455. https://doi.org/10.1016/s1004-9541(08)60104-4
Wang P., Shi T., Mehta N., … Zhu Z. Changes in magnetic properties of magnetite nanoparticles upon microbial iron reduction. Geochemistry, Geophysics, Geosystems. 2022;23(3): e2021GC010212. https://doi.org/10.1029/2021GC010212
He H., Zhong Y., Liang X., Tan W., Zhu J., Wang C. Y. Natural magnetite: an efficient catalyst for the degradation of organic contaminant. Scientific Reports. 2015;5: 10139. https://doi.org/10.1038/srep10139
Fischer A., Schmitz M., Aichmayer B., Fratzl P., Faivre D. Structural purity of magnetite nanoparticles in magnetotactic bacteria. Journal of the Royal Society Interface. 2011;8(60): 1011–1018. https://doi.org/10.1098/rsif.2010.0576
Blaney L. Functionalized magnetite nanoparticles–synthesis, properties, and bio- Applications. The Lehigh Review. 2007;15: 32–81. https://doi.org/10.1080/10408430701776680
Wu S., Sun A., Zhai F., … Volinsky A. A. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Materials Letters. 2011;65: 1882–1884. https://doi.org/10.1016/j.matlet.2011.03.065
Beaudoin É. J., Kubaski M. M., Samara M., Zednik R. J., Demarquette N. R. Scaled-up multi-needle electrospinning process using parallel plate auxiliary electrodes. Nanomaterials. 2022;12(8): 1356. https://doi.org/10.3390/nano12081356
Partheniadis I., Nikolakakis I., Laidmäe I., Heinämäki J. A Mini-review: Needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. Processes. 2020;8(6): 673. https://doi.org/10.3390/pr8060673
Wang X., Niu H., Lin T., Wang X. Needleless electrospinning of nanofibers with a conical wire coil. Polymer Engineering and Science. 2009;49: 1582–1586. https://doi.org/10.1002/pen.21377
Thoppey N. M., Bochinski J. R., Clarke L. I., Gorga R. E. Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer. 2010;51: 4928–4936. https://doi.org/10.1016/j.polymer.2010.07.046
Wu D., Huang X., Lai X., Sun D., Lin L. High throughput tip-less electrospinning via a circular cylindrical electrode. Journal of Nanoscience and Nanotechnology. 2010;10: 4221–4226. https://doi.org/10.1166/jnn.2010.2194
Ahmad A., Ali U., Nazir A., … Abid S. Toothed wheel needleless electrospinning: A versatile way to fabricate uniform and finer nanomembrane. Journal of Materials Science. 2019;54: 13834–13847. https://doi.org/10.1007/s10853-019-03875-0
Kara Y., He H., Molnár K. Shear-aided highthroughput electrospinning: A needleless method with enhanced jet formation. Journal of Applied Polymer Science. 2020;137: e49104. https://doi.org/10.1002/app.49104
Chiscan O., Dumitru I., Postolache P., TuraV., Stancu A. Electrospun PVC/Fe3O4 composite nanofibers for microwave absorption applications. Materials Letters. 2012;68: 251–254. https://doi.org/10.1016/j.matlet.2011.10.084
Mashuri X., Lestari W., Triwikantoro X., Darminto X. Preparation and microwave absorbing properties in the X-band of natural ferrites from iron sands by high energy milling. Materials Research Express. 2018; 5(1): 014003. https://doi.org/10.1088/2053-1591/aa68b4
Liu X., Cao K., Chen Y., … Peng D. L. Shapedependent magnetic and microwave absorption properties of iron oxide nanocrystals. Materials Chemistry and Physics. 2017;192: 339–348. https://doi.org/10.1016/j.matchemphys.2017.02.012
Zhang B., Du Y., Zhang P., … Xu P. Microwave absorption enhancement of Fe3O4/polyaniline core/ shell hybrid microspheres with controlled shell thickness. Journal of Applied Polymer Science. 2013;130(30): 1909–1916. https://doi.org/10.1002/app.39332
Tong G., Wu W., Guan J., Qian H., Yuan J., Li W. Synthesis and characterization of nanosized urchinlike a-Fe2O3 and Fe3O4: Microwave electromagnetic and absorbing properties. Journal of Alloys and Compounds. 2011; 509: 4320–4326. https://doi.org/10.1016/j.jallcom.2011.01.058
Kolev S., Yanev A., Nedkov I. Microwave absorption of ferrite powders in a polymer matrix. Physica Status Solidi c. 2006;3(5): 1308–1315. https://doi.org/10.1002/pssc.200563116
Ni S., Sun X., Wang X., … He D. Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Materials Chemistry and Physics. 2010;124: 353–358. https://doi.org/10.1016/j.matchemphys.2010.06.046
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.