Функциональные бораты и их высокобарические полиморфные модификации. Обзор

  • Татьяна Борисовна Беккер ФГБОУ Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук, пр. Ак. Коптюга 3, Новосибирск 630090, Российская Федерация; ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет» ул. Пирогова, 1, Новосибирск 630090, Российская Федерация https://orcid.org/0000-0003-3100-5210
  • Нурсултан Ерболулы Сагатов ФГБОУ Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук, пр. Ак. Коптюга 3, Новосибирск 630090, Российская Федерация; ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет» ул. Пирогова, 1, Новосибирск 630090, Российская Федерация https://orcid.org/0000-0001-5158-3523
  • Алексей Владимирович Давыдов ФГБОУ Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук, пр. Ак. Коптюга 3, Новосибирск 630090, Российская Федерация; ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет» ул. Пирогова, 1, Новосибирск 630090, Российская Федерация https://orcid.org/0000-0003-2770-3331
Ключевые слова: низкотемпературная модификация метабората бария, четверная взаимная система, рост из высокотемпературных растворов, бораты с «антицеолитной» структурой

Аннотация

В данной работе представлены результаты многолетних исследований выращивания кристаллов низкотемпературной модификации бората бария b-BaB2O4 ( R3с) в четверной взаимной системе Na, Ba, B // O, F. Борат бария b‑BaB2O4 является важнейшим нелинейно-оптическим кристаллом УФ диапазона. Ключевым фактором, определяющим реальное качество кристаллов, является выбор оптимального по своим свойствам растворителя. В работе рассмотрены фазовые диаграммы и результаты  выращивания кристаллов b-BaB2O4 в нескольких подсистемах указанной четверной взаимной системы. С применением атомистического моделирования предсказаны, а затем и получены экспериментально новые высокобарические модификации, g-BaB2O4 (P21/n), в структуре которой при-
сутствуют реберносвязанные тетраэдры, и d-BaB2O4 с предполагаемой симметрией Pa3. Другим объектом, рассмотренным в работе, является твердый раствор с «антицеолитной» структурой, который также кристаллизуется в системе Na, Ba, B // O, F

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Татьяна Борисовна Беккер, ФГБОУ Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук, пр. Ак. Коптюга 3, Новосибирск 630090, Российская Федерация; ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет» ул. Пирогова, 1, Новосибирск 630090, Российская Федерация

д. г.-м. н., профессор РАН, вед. н. с. Института геологии и минералогии им. В. С. Соболева Сибирского отделения Российской академии наук (Новосибирск, Российская Федерация), с. н. с. Новосибирского государственного университета (Новосибирск, Российская Федерация)

Нурсултан Ерболулы Сагатов, ФГБОУ Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук, пр. Ак. Коптюга 3, Новосибирск 630090, Российская Федерация; ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет» ул. Пирогова, 1, Новосибирск 630090, Российская Федерация

к. ф.-м. н., н. с., Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Новосибирск, Российская Федерация), Новосибирский государственный университет, (Новосибирск, Российская Федерация)

Алексей Владимирович Давыдов, ФГБОУ Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук, пр. Ак. Коптюга 3, Новосибирск 630090, Российская Федерация; ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет» ул. Пирогова, 1, Новосибирск 630090, Российская Федерация

н. с., Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Новосибирск, Российская Федерация), Новосибирский государственный университет, (Новосибирск, Российская Федерация)

Литература

Chen C., Wu B., Jiang A., You G. A new-type ultraviolet SHG crystal – b-BaB2O4. Materials Science, Physics Science in China Series B.1985;28: 235–243. https://doi.org/10.1360/yb1985-28-3-235

Perlov D., Livneh S., Czechowicz P., Goldgirsh A., Loiacono D. Progress in growth of large b-BaB2O4 single crystals. Crystal Research and Technology. 2011;46: 651–654. https://doi.org/10.1002/crat.201100208

Mutailipu M., Poeppelmeier K. R., Pan S. Borates: A rich source for optical materials. Chemical Reviews.2021;121: 1130−1202. https://doi.org/10.1021/acs.chemrev.0c00796

Fedorov P. P., Kokh A. E., Kononova N. G., Barium borate beta-BaB2O4 as a material for nonlinear optics. Russian Chemical Reviews 2002;71(8): 651−671. https://doi.org/10.1070/RC2002v071n08ABEH000716

Chen C., Sasaki T., Li R., … Kaneda Y. Nonlinear optical borate crystals, principles and applications. Wiley-VCH Verlag GmbH & Co. KGaA; 2012. 387 p. https://doi.org/10.1002/9783527646388

Feigelson R. S., Raymakers R. J., Route R. K. Solution growth of barium metaborate crystals by top seeding. Journal of Crystal Growth. 1989;97: 352−366. https://doi.org/10.1016/0022-0248(89)90217-0

Nikolov V., Peshev P. On the growth of b-BaB2O4 (BBO) single crystals from hightemperature solutions: I. Study of solvents of the BaO–Na2O–B2O3 system. Journal of Solid State Chemistry. 1992;96: 48–52. https://doi.org/10.1016/S0022-4596(05)80295-6

Tang D.Y., Zeng W. R., Zhao Q. L. A study on growth of b-BaB2O4 crystals. Journal of Crystal Growth. 1992;123: 445–450. https://doi.org/10.1016/0022-0248(92)90605-I

Fedorov P. P., Kokh A. E., Kononova N. G., Bekker T. B. Investigation of phase equilibria and growth of BBO (b-BaB2O4) in BaO-B2O3-Na2O ternary system. Journal of Crystal Growth. 2008;310: 1943–1949. https://doi.org/10.1016/j.jcrysgro.2007.11.119

Roth M., Perlov D. Growth of barium borate crystals from sodium fluoride solutions, Journal of Crystal Growth. 1996;169: 734–740. https://doi.org/10.1016/S0022-0248(96)00450-2

Chen W., Jiang A., Wang G. Growth of high-quality and large-sized b-BaB2O4 crystal. Journal of Crystal Growth. 2003;256: 383–386. https://doi.org/10.1016/S0022-0248(03)01358-7

Perlov D., Livneh S., Czechowicz P., Goldgirsh A., Loiacono D. Progress in growth of large b-BaB2O4 single crystals. Crystal Research and Technology. 2011;46: 651–654. https://doi.org/10.1002/crat.201100208

Bekker T. B., Kokh A. E., Kononova N. G., Fedorov P. P., Kuznetsov S. V. Crystal growth and phase equilibria in the BaB2O4–NaF system. Crystal Growth and Design. 2009;9: 4060–4063. https://doi.org/10.1021/cg9002675

Sagatov N. E., Bekker T. B., Podborodnikov I. V., Litasov K. D. First-principles investigation of pressure-induced structural transformations of barium borates in the BaO–B2O3–BaF2 system in the range of 0–10 GPa. Computational Materials Science. 2021;199: 110735. https://doi.org/10.1016/j.commatsci.2021.110735

Marezio M., Remeika J. P., Dernier P. D. The crystal structure of the high-pressure phase CaB2O4 (IV), and polymorphism in CaB2O4. Acta Crystallographica B. 1969;25: 965–970. https://doi.org/10.1107/S0567740869003256

Bekker T. B., Fedorov P. P., Kokh A. E. Phase formation in the BaB2O4 -BaF2 system. Crystallogr. Rep. 2012;57(4): 574–578. https://doi.org/10.1134/S1063774512040025

Jiang A., Cheng F., Lin Q., Cheng G., Zheng Y. Flux growth of large single crystals of low temperature phase barium metaborate. Journal of Crystal Growth. 1986;79: 963–969. https://doi.org/10.1016/0022-0248(86)90579-8

Bekker T. B., Kokh A. E., Fedorov P. P. Phase equilibria and beta-BaB2O4 crystal growth in the BaB2O4-BaF2 system. CrystEngComm. 2011;13: 3822–3826. https://doi.org/10.1039/C1CE05071K

Jänecke E. Über reziproke Salzpaare und doppelt-ternäre Salzmischungen, Zeitschrift für Physikalische Chemie. 1913;82: 1–34. https://doi.org/10.1515/zpch-1913-8202

Tu J. -M. Keszler D. A. BaNaBO3. Acta Crystallographica.1995;51(10): 1962–1964. https://doi.org/10.1107/s010827019400750x

Kokh A.E., Kononova N.G., Bekker T. B., Fedorov P.P., Nigmatulina E.A., Ivanova A.G. An investigation of the growth of b-BaB2O4 crystals in the BaB2O4-NaF system and new fluoroborate Ba2Na3[B3O6]2F. Crystallogr. Rep. 2009;54(1): 146–151. https://doi.org/10.1134/S1063774509010258

Bekker T. B., Rashchenko S. V., Solntsev V. P., … Kuznetsov A. B. Growth and optical properties of LixNa1–xBa12(BO3)7F4 fluoride borates with ‘anti-zeolite’ structure. Inorganic Chemistry. 2017;56(9): 5411–5419. https://doi.org/10.1021/acs.inorgchem.7b00520

Bekker T. B., Rashchenko S. V, Seryotkin Y. V., Kokh A. E., Davydov A. V., Fedorov P. P. BaO–B2O3 system and its mysterious member Ba3B2O6. Journal of the American Ceramic Society. 2018;101(1): 450–457. https://doi.org/10.1111/jace.15194

Rashchenko S. V., Bekker T. B., Bakakin V. V., Seryotkin Y. V., Simonova E. A., Goryainov S. V. New fluoride borate with ‘anti-zeolite’ structure: A possible link to Ba3(BO3)2. Journal of Alloys and Compounds. 2017;694: 1196–1200. https://doi.org/10.1016/j.jallcom.2016.10.119

Zhao J., Li R. K. Two new barium borate fluorides ABa12 (BO3)7F4 (A= Li and Na). Inorganic Chemistry. 2014;53(5): 2501-2505. https://doi.org/10.1021/ic4025525

Bekker T. B., Podborodnikov I. V., Sagatov N. E., … Litasov K. D. g-BaB2O4: high-pressure high-temperature polymorph of barium borate with edge-sharing BO4 tetrahedra. Inorganic Chemistry. 2022;61(4): 2340–2350. https://doi.org/10.1021/acs.inorgchem.1c03760

Sagatov N. E., Bekker T. B., Vinogradova Y. G., Davydov A. V., Podborodnikov I. V., Litasov K. D. Experimental and ab initio study of Ba2Na3(B3O6)2F stability in the pressure range of 0–10 GPa. International Journal of Minerals, Metallurgy and Materials. 2023;30(9): 1846–1854. https://doi.org/10.1007/s12613-023-2647-0

Shatskiy A., Sharygin I. S., Gavryushkin P. N., … Ohtani E. The system K2CO3-MgCO3 at 6 GPa and 900-1450 °C. American Mineralogist. 2013;98(8-9): 1593–1603. https://doi.org/10.2138/am.2013.4407

Bekker, T. B., Fedorov, P. P. New type of ternary reciprocal system: Na,Ba‖BO2,F system. Russian Journal of Inorganic Chemistry. 2014;59: 1507–1511. https://doi.org/10.1134/S0036023614120055

Bekker T. B., Fedorov P. P., Kokh A. E. The ternary reciprocal system Na, Ba // BO2, F. Crystal Growth and Design. 2012;12(1): 129–134. https://doi.org/10.1021/cg2008705

Huang Q. -Z., Liang J. K. The crystal growth of barium borate low temperature phase and the study of phase diagrams of related systems. Acta Physica Sinica 1981;30: 559. (In Chinese). https://doi.org/10.7498/aps.30.559

Furmanova, N. G., Maksimov, B. A., Molchanov, V. N., Kokh A. E., Kononova N. G., Fedorov P. P. Crystal structure of the new barium borate Ba5(BO3)2(B2O5). Crystallography Reports. 2006;51: 219–224. https://doi.org/10.1134/S1063774506020076

Kokh A. E., Kononova N. G., Bekker T. B., … Kargin Yu. F. New sodium barium orthoborate NaВа4(ВО3)3. Russian Journal of Inorganic Chemistry. 2004;49(7): 984–988.

Bekker T. B. Phase formation and crystal growth in the quaternary reciprocal system Na, Ba, B // O, F*. Dissertation of Dr. Geol.-miner. Sci. Novosibirsk: 2015. 279 p. https://www.dissercat.com/content/fazoobrazovanie-i-rost-kristallov-v-chetvernoi-vzaimnoi-sisteme-na-ba-b-o-f

Bekker T. B., Fedorov P. P., Kokh A. E. Phase formation and crystal growth in the quaternary reciprocal system Na, Ba, B // O, F. Novosibirsk: Siberian Branch of the Russian Academy of Sciences Publ. 2016. 217 p. (In Russ.). Available at: https://www.rfbr.ru/library/books/2416/

Carrillo Romo F., Goutaudier C., Guyot Y., Cohen-Adad M. Th., Boulon G., Lebbou K., Yoshikawa A., Fukuda T. Yb3+-doped Ba2NaNb5O15 (BNN) growth, characterization and spectroscopy. Optical Materials. 2001;16: 199–206. https://doi.org/10.1016/S0925-3467(00)00078-1

Hong W., Perlov D., Halliburton L. E. Electron paramagnetic resonance study of Ag0 atoms and Ag2+ ions in b-BaB2O4 nonlinear optical crystals. Journal of Physics D: Applied Physics. 2003;36: 2605–2611. https://doi.org/10.1088/0022-3727/36/21/002

Hong W., Halliburton L. E., Perlov D., Stevens K. T., Route R. K., Feigelson R. S. Observation of paramagnetic point defects in BBO (b-BaB2O4) crystals. Optical Materials. 2004;26(4): 437–441. https://doi.org/10.1016/j.optmat.2003.08.012

Bekker T. B., Kokh A. E., Fedorov P. P., Stonoga S. Yu. Phase equilibria and growth of b-BaB2O4 crystals in the BaB2O4-Ba2Na3[B3O6]2F system. Crystallography Reports. 2012;57(2): 327–331. https://doi.org/10.1134/s1063774512020022]

Fedorov P. P., Kokh A. E., Kononova N. G., Bekker T. B. Investigation of phase equilibria and growth of BBO (b-BaB2O4) in BaO-B2O3-Na2O ternary system. Journal of Crystal Growth. 2008;310(7-9): 1943–1949. https://doi.org/10.1016/j.jcrysgro.2007.11.119

Palacios L., Cabeza, A., Bruque S., García-Granda S., Aranda M. A. Structure and electrons in mayenite electrides. Inorganic Chemistry. 2008;47(7): 2661–2667. https://doi.org/10.1021/ic7021193

Kim S. W., Hosono H. Synthesis and properties of 12CaO·7Al2O3 electride: review of single crystal and thin film growth. Philosophical Magazine. 2012;92(19-21): 2596-2628. https://doi.org/10.1080/14786435.2012.685770

Zhang X., Feng Q., Zhao J., … Lu Q. Sr-doping enhanced electrical transport and thermionic emission of single crystal 12CaO·7Al2O3 electride. Current Applied Physics. 2020;20(1): 96–101. https://doi.org/10.1016/j.cap.2019.10.008

Li R., Zhang X., Xiao Y., Liu Y. One-step preparation and electrical transport characteristics of single-crystal Ca24Al28O66 electrides. Journal of Electronic Materials.2020;49: 7308–7315. https://doi.org/10.1007/s11664-020-08469-0

Bekker T. B., Solntsev V. P., Rashchenko S. V., … Park S.-H. Nature of color of the borates with the ‘anti-zeolite’ structure. Inorganic Chemistry. 2018;57(5); 2744–2751. https://doi.org/10.1021/acs.inorgchem.7b03134

Bekker T. B., Solntsev V. P., Eliseev A. P., … Kuznetsov A. B. Dichroic material – fluoride borate with an “anti-zeolite” structure*. Russian Federation Patent RF: No. 2689596. Publ. 05.28.2019, bull. No. 16. (In Russ.)]

Bekker T. B., Khamoyan A. G., Davydov A. V., Vedenyapin V. N., Yelisseyev A. P., Vishnevskiy A. V. NaBa12(BO3)7F4 (NBBF) dichroic crystals: optical properties and dielectric permittivity. Dalton Transactions. 2024; 53(29): 12215-12222. https://doi.org/10.1039/d4dt01380h

Bekker T. B., Davydov A. V., Sagatov N. E. Comparative characteristics of various solvents of the Na, Ba, B//O, F system for the growth of b-BaB2O4 crystals and PT-diagram of BaB2O4 polymorphs. Journal of Crystal Growth. 2022;599: 126895. https://doi.org/10.1016/j.jcrysgro.2022.126895

Huppertz H., von der Eltz B. Multianvil high-pressure synthesis of Dy4B6O15: the first oxoborate with edge-sharing BO4 tetrahedra. Journal of the American Chemical Society. 2002;124(32): 9376-9377. https://doi.org/10.1021/ja017691z

Grice J. D., Burns P. C., Hawthorne F. C. Borate minerals. II. A hierarchy of structures based upon the borate fundamental building block. The Canadian Mineralogist. 1999;37(3): 731–762.

Knyrim J. S., Roessner F., Jakob S., … Huppertz H. Formation of edge-sharing BO4 tetrahedra in the high-pressure borate HP-NiB2O4. Angewandte Chemie International Edition. 2007;46(47): 9097–9100. https://doi.org/10.1002/anie.200703399

Neumair S. C., Vanicek S., Kaindl R., … Huppertz H. HP-KB3O5 highlights the structural diversity of borates: corner-sharing BO3/BO4 groups in combination with edge-sharing BO4 tetrahedra. European Journal of Inorganic Chemistry. 2011;27: 4147–4152. https://doi.org/10.1002/ejic.201100618

Jin S., Cai G., Wang W., He M., Wang S., Chen X. Stable oxoborate with edge-sharing BO4 tetrahedra synthesized under ambient pressure. Angewandte Chemie International Edition. 2010;122(29): 5087–5090. https://doi.org/10.1002/ange.200907075

Mutailipu M., Zhang M., Li H., … Pan S. Li4Na2CsB7O14: a new edge-sharing [BO4]5−tetrahedra containing borate with high anisotropic thermal expansion. Chemical Communications. 2019;55(9): 1295–1298. https://doi.org/10.1039/c8cc09422e

Han J., Liu K., Chen L., … Mutailipu M. Finding a deep-UV borate BaZnB4O8 with edge-sharing [BO4] tetrahedra and strong optical anisotropy. Chemistry – A European Journal. 023;9(6): 202203000. https://doi.org/10.1002/chem.202203000

Li J. J., Chen W. F., Lan Y. Z., Cheng J. W. Recent progress in crystalline borates with edge-sharing BO4 tetrahedra. Molecules. 2023;28(13): 5068. https://doi.org/10.3390/molecules28135068

Liu N., Kong J., Wang Z., Wang Y. Color-tunability and energy transfer of a highly thermal-stable BaZnB4O8: Tb3+/Eu3+ phosphor for single-component w-LEDs. Journal of Molecular Structure. 2024;1311: 138441. https://doi.org/10.1016/j.molstruc.2024.138441

Mighell A. D., Perloff A., Block S. The crystal structure of the high temperature form of barium borate, BaO·B2O3. Acta Crystallographica. 1966;20: 819–823. https://doi.org/10.1107/S0365110X66001920

Bubnova R., Volkov S., Albert B., Filatov S. Borates – crystal structures of prospective nonlinear optical materials: high anisotropy of the thermal expansion caused by anharmonic atomic vibrations. Crystals. 2017;7(3): 93. https://doi.org/10.3390/cryst7030093

Voronko Yu. K., Sobol A. A., Shukshin V. E. Structure of boron-oxygen fragments of metaborates of alkali and alkaline earth metals in crystalline, molten and glassy states. Inorganic materials. 2012:48(7); 837. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=17745523

Lu J. Q., Lan G. X., Li B., Yang Y. Y., Wang H. F., Bai C. W. Raman scattering study of the single crystal b-BaB2O4 under high pressure. Journal of Physics and Chemistry of Solids. 1988;49(5): 519–527. https://doi.org/10.1016/0022-3697(88)90063-7

Liu S., Zhang G., Wan S., … Wu Y. High-temperature Raman spectroscopy of microstructure around the growing b-BaB2O4 crystal in the BaO–B2O3–Na2O system. Journal of Applied Crystallography. 2014;47(2): 739-744. https://doi.org/10.1107/S160057671400377X

Опубликован
2024-10-15
Как цитировать
Беккер, Т. Б., Сагатов, Н. Е., & Давыдов, А. В. (2024). Функциональные бораты и их высокобарические полиморфные модификации. Обзор. Конденсированные среды и межфазные границы, 26(4), 620-632. https://doi.org/10.17308/kcmf.2024.26/12384
Раздел
Обзор