Анализ кристаллического качества объемных слоев In0.83Ga(Al)0.17As, сформированных на метаморфных буферных слоях InAlAs/InP с линейным и нелинейным градиентом состава
Аннотация
В данной работе исследуется эффективность использования InAlAs метаморфных буферных слоев с линейной и корневой зависимостью мольной доли In в составе для роста объемных слоев In0.83Ga(Al)0.17As на подложках InP. Анализ карт рассеянной рентгеновской интенсивности в обратном пространстве показал, что слои In0.83Ga(Al)0.17As являются частично релаксированными в обоих случаях. Одним из механизмов релаксации напряений при росте буферного слоя, имеющем линейную зависимость изменения состава, является разворот кристаллической решетки, а при росте буферного слоя, имеющем корневую зависимость, — наклон кристаллической решетки на 0.82° без разворота. Плотность прорастающих дислокаций в верхних фотодиодных слоях InGaAs, выращенных на буферном
слое с линейным законом изменения состава, составляет ~ 5·108 см–2, как следует из изображений, полученных методом просвечивающей электронной микроскопии
Скачивания
Литература
Galiev G. B., Vasil’evskii I. S., Pushkarev S. S., … Dwir Е. I. Suvorova metamorphic InAlAs/InGaAs/InAlAs/GaAs HEMT heterostructures containing strained superlattices and inverse steps in the metamorphic buffer. Journal of Crystal Growth. 2013;366: 55–60. https://doi.org/10.1016/j.jcrysgro.2012.12.017
Kettler T., Karachinsky L. Ya., Fiol G., … Ledentsov N. N. Degradation-robust single mode continuous wave operation of 1.46 μm metamorphic quantum dot lasers on GaAs substrate. Applied Physics Letters. 2006;89(4): 041113. https://doi.org/10.1063/1.2236291
Egorov A. Yu., Karachinsky L. Ya., Novikov I. I., Babichev A. V., Nevedomskiy V. N., Bugrov V. E. Optical properties of metamorphic GaAs/InAlGaAs/InGaAs heterostructures with InAs/InGaAs quantum wells, emitting light in the 1250–1400 nm spectral range. Semiconductors. 2016; 50(5): 612–615. https://doi.org/10.1134/S1063782616050079
Egorov A. Yu., Karachinsky L. Ya., Novikov I. I., Babichev A. V., Berezovskaya T. N., Nevedomskiy V. N. Metamorphic distributed Bragg reflectors for the 1440–1600 nm spectral range: epitaxy, formation, and regrowth of mesa structures. Semiconductors. 2015;49(10): 1388–1392. https://doi.org/10.1134/S1063782615100073
Garcia I., France R. M., Geisz J. F., McMahon W. E., Steiner M. A., Johnston S., Friedman D. J. Metamorphic III–V solar cells: recent progress and potential. IEEE Journal of Photovoltaics. 2015;6(1): 366–373. https://doi.org/10.1109/JPHOTOV.2015.2501722
Liu Y., Ma Y., Li X., … Gong H. High temperature behaviors of 1–2.5 μm extended wavelength In0.83Ga0.17As photodetectors on InP substrate. IEEE Journal of Quantum Electronics. 2021;57(4): 1–7. https://doi.org/10.1109/JQE.2021.3087324
Gendry M., Drouot V., Santinelli C., Hollinger G. Critical thicknesses of highly strained InGaAs layers grown on InP by molecular beam epitaxy. Applied Physics Letters. 1992;60(18): 2249–2251. https://doi.org/10.1063/1.107045
Ji X., Liu B., Tang H., … Yan F. 2.6 μm MBE grown InGaAs detectors with dark current of SRH and TAT. AIP Advances, 2014;4(8): 087135. https://doi.org/10.1063/1.4894142
Vasilkova E. I., Pirogov E. V., Sobolev M. S., Ubiyvovk Е. V., Mizerov А. М., Seredin P. V. Molecular beam epitaxy of metamorphic buffer for InGaAs/InP photodetectors with high photosensitivity in the range of 2.2–2.6 um. Condensed Matter and Interphases. 2023;25(1): 20–26. https://doi.org/10.17308/kcmf.2023.25/10972
Pobat D. B., Solov’ev V. A., Chernov M. Yu., Ivanov S. V. Distribution of misfit dislocations and elastic mechanical stresses in metamorphic buffer InAlAs layers of various constructions. Physics of the Solid State. 2021;63(1): 84–89. https://doi.org/10.1134/s1063783421010170
Solov’ev V. A., Chernov M. Yu., Sitnikova A. A., Brunkov P. N., Meltser B. Ya., Ivanov S. V. Optimization of the structural properties and surface morphology of a convex-graded InxAl1-xAs (x = 0.05–0.83) metamorphic buffer layer grown via MBE on GaAs (001). Semiconductors. 2018; 52(1): 120–125. https://doi.org/10.1134/s1063782618010232
Chen X., Gu Y., Zhang Y. Epitaxy and device properties of InGaAs photodetectors with relatively high lattice mismatch. Epitaxy. 2018: 203. https://doi.org/10.5772/intechopen.70259
Fewster P. F. Reciprocal space mapping. Critical Reviews in Solid State and Material Sciences. 1997;22(2): 69–110. https://doi.org/10.1080/10408439708241259
Bellani V., Bocchi C., Ciabattoni T., … Trevisi G. Residual strain measurements in InGaAs metamorphic buffer layers on GaAs. The European Physical Journal B. 2007;56: 217–222. https://doi.org/10.1140/epjb/e2007-00105-8
Fewster P. F. X-ray diffraction from low-dimensional structures. Semiconductor Science and Technology. 993;8(11): 1915. https://doi.org/10.1088/0268-1242/8/11/001
Vasil’evskii I. S., Pushkarev S. S., Grekhov M. M., Vinichenko A. N., Lavrukhin D. V., Kolentsova O. S. Features of the diagnostics of metamorphic InAlAs/InGaAs/InAlAs nanoheterostructures by high-resolution X-ray diffraction in the ω-scanning mode. Semiconductors. 2016;50(4): 559–565. https://doi.org/10.1134/s1063782616040242
Lee D., Park M. S., Tang Z., Luo H., Beresford R., Wie C. R. Characterization of metamorphic InxGa1−xAs∕GaAs buffer layers using reciprocal space mapping. Journal of Applied Physics. 2007;101(6):063523, https://doi.org/10.1063/1.2711815
Aleshin A. N., Bugaev A. S., Ermakova M. A., Ruban O. A. Investigation of MHEMT heterostructure with In0.4Ga0.6As channel, grown by MBE on GaAs substrate, using reciprocal space mapping. Semiconductors. 2015;49(8):1065. Available at: https://journals.ioffe.ru/articles/viewPDF/42087
Chauveau J.-M., Androussi Y., Lefebvre A., Persio J. Di, Cordier Y. Indium content measurements in etamorphic high electron mobility transistor structures by combination of X-ray reciprocal space mapping and transmission electron microscopy. Journal of Applied Physics. 2003;93(7): 4219–4225. https://doi.org/10.1063/1.1544074
Copyright (c) 2025 Конденсированные среды и межфазные границы

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.