Синтез и экспериментальное исследование жидких дисперсий магнитных флуоресцентных полистирольных микросфер
Аннотация
Мультиплексный иммунофлуоресцентный анализ на основе микросфер является надёжным, точным и высокочувствительным методом обнаружения различных биомолекул. Однако в настоящее время широкому применению метода в клинической практике препятствует высокая стоимость реагентов для анализа – магнитных спектрально-кодированных микросфер. Поэтому актуальной задачей является разработка новых методик синтеза микросфер, обладающих необходимыми свойствами. Цель работы заключалась в создании новых магнитных флуоресцентных микросфер, пригодных для использования в мультиплексном иммуноанализе. Были синтезированы образцы магнитных флуоресцентных полистирольных микросфер методами дисперсионной полимеризации и двухстадийного набухания. Проведены экспериментальные исследования геометрических
параметров, флуоресценции, магнитных свойств синтезированных микросфер.
Результаты проведенных исследований показали, что перспективными для применения в иммунофлуоресцентном анализе являются микросферы, синтезированные методом дисперсионной полимеризации. Полученные результаты могут быть использованы при разработке новых диагностических мультиплексных тест-систем на основе спектрально-кодированных микросфер.
Скачивания
Литература
Gu Z., Zhao, S., Xu G., Chen C., Wang Y., Gu H., Xu H. Solid-phase PCR based on thermostable, encoded magnetic microspheres for simple, highly sensitive and multiplexed nucleic acid detection. Sensors and Actuators B: Chemical. 2019;298: 126953. https://doi.org/10.1016/j.snb.2019.126953
Su R., Tang X., Feng L., Yao G. L., Chen J. Development of quantitative magnetic beads-based flow cytometry fluorescence immunoassay for aflatoxin B1. Microchemical Journal: 2020;155: 104715. https://doi.org/10.1016/j.microc.2020.104715
Klisara N., Peters J., Haasnoot W., Nielen M. W., Palaniappan A., Liedberg B. Functional fluorescence assay of botulinum neurotoxin A in complex matrices using magnetic beads. Sensors and Actuators B: Chemical: 2019;281: 912–919. https://doi.org/10.1016/j.snb.2018.10.100
Jin M., Luo J., Dou X., Yang M., Fan Z. A sensitive cytometric bead array for chlorpyrifos using magnetic microspheres. Microchemical Journal. 2020;156: 104847. https://doi.org/10.1016/j.microc.2020.104847
Ding L., Chen X., He L., Yu F., Yu S., Wang J., Qu L. Fluorometric immunoassay for the simultaneous determination of the tumor markers carcinoembryonic antigen and cytokeratin 19 fragment using two kinds of CdSe/ZnS quantum dot nanobeads and magnetic beads. Microchimica Acta. 2020;187(3): 1–8. https://link.springer.com/article/10.1007/s00604-019-3914-7
Wei X., Bian F., Cai X., Wang Y., Cai L., Yang J., Zhao Y. Multiplexed detection strategy for bladder cancer microRNAs based on photonic crystal barcodes. Analytical Chemistry. 2020;92(8): 6121–6127. Available at: https://pubs.acs.org/doi/10.1021/acs.analchem.0c00630
Priest J. W., Moss D. M. Measuring cryptosporidium serologic responses by multiplex bead assay. In: Mead J., Arrowood M. (eds). Cryptosporidium. Methods in Molecular Biology, vol. 2052. New York, NY: Humana; 2020. 61–85 p. https://doi.org/10.1007/978-1-4939-9748-0_5
Chen J. H.-K., Yip C. C.-Y., Chan J. F.-W., Poon R. W. S., To K. K.-W., Chan K. H., Yuen K. Y. Clinical performance of the luminex NxTAG CoV extended panel for SARS-CoV-2 detection in nasopharyngeal specimens of COVID-19 patients in Hong Kong. Journal of Clinical Microbiology. 2020;58(8): e00936-20. https://doi.org/10.1128/jcm.00936-20
Wilson R., Spiller D. G., Prior I. A., Veltkamp K. J., Hutchinson A. A simple method for preparing spectrally encoded magnetic beads for multiplexed detection. ACS Nano. 2007;1(5): 487–493. https://pubs.acs.org/doi/abs/10.1021/nn700289m
Graham H., Chandler D. J., Dunbar S. A. The genesis and evolution of bead-based multiplexing.Methods. 2019;158: 2–11. https://doi.org/10.1016/j.ymeth.2019.01.007
Ligler F. S., Kim J. S. The Microflow Cytometer.Boca Raton: Pan Stanford Publ.; 2010. 394 p. https://doi.org/10.1201/9780429109157
Dunbar S. A. Bead-based suspension arrays for the detection and identification of respiratory viruses. In: Tang Y. W., Stratton C. (eds) Advanced techniques in diagnostic microbiology. Boston, MA; Springer: 2013. 813–833 pp. https://doi.org/10.1007/978-1-4614-3970-7_42
Mountjoy K. G. ELISA versus LUMINEX assay for measuring mouse metabolic hormons and cytokines: sharing the lessons I have learned. Journal of Immunoassay and Immunochemistry. 2020: 1–20. https://doi.org/10.1080/15321819.2020.1838924
Ligler F. S., Erickson J. S., Golden J. P., Kim J. S, Nasir M., Howell P. J., Thangawng A. L., Hilliard L., Anderson G. P. Microflow cytometer. In: Proc. SPIE 7167, Frontiers in Pathogen Detection: From Nanosensors to Systems, 71670N, 19 February 2009. https://doi.org/10.1117/12.807671
Germeraad E. A., Achterberg R.P., Venema S., Post J., de Leeuw O., Koch G., van der Wal F.J., Beerens N. The development of a multiplex serological assay for avian influenza based on Luminex technology. Methods. 2019;158: 54–60. https://doi.org/10.1016/j.ymeth.2019.01.012
Choi J., Kwak, S. Y., Kang S., Lee S. S., Park M., Lim S., Hong S. I. Synthesis of highly crosslinked monodisperse polymer particles: effect of reaction parameters on the size and size distribution. Journal of Polymer Science Part A: Polymer Chemistry. 2002;40(23): 4368–4377. https://doi.org/10.1002/pola.10514
Barrett K. E. Dispersion polymerization in organic media. New York: John Wiley & Sons, Inc.; 1975. 338 p.
Lok K. P., Ober C. K. Particle size control in dispersion polymerization of polystyrene. Canadian Journal of Chemistry. 1985;63(1): 209–216. https://doi.org/10.1139/v85-033
Ugelstad J., Mork P. C., Kaggerud K. H., Ellingsen T., Berge A. Swelling of oligomer-polymer particles. New methods of preparation. Advances in Colloid and Interface Science. 1980;13(1-2): 101–140. https://doi.org/10.1016/0001-8686(80)87003-5
Ugelstad J., Mfutakamba H. R., Mørk P. C., Ellingsen T., Berge A., Schmid R., Nustad K. Preparation and application of monodisperse polymer particles. Journal of Polymer Science: Polymer Symposia. 1985;72(1): 225–240. https://doi.org/10.1002/polc.5070720125
Lee J. H., Gomez I. J., Sitterle V. B., Meredith J. C. Dye-labeled polystyrene latex microspheres prepared via a combined swelling-diffusion technique. Journal of Colloid and Interface Science. 2011;363(1): 137–144. https://doi.org/10.1016/j.jcis.2011.07.047
Ugelstad J.; Kaggerud K. H.; Hansen F. K.; Berge A. Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles. A two step swelling process of polymer particles giving an enormous increase in absorption capacity. Die Makromolekulare Chemie. 1979;180(3): 737–744. https://doi.org/10.1002/macp.1979.021800317
Okubo M., Shiozaki M., Tsujihiro M., Tsukuda Y. Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method. Colloid and Polymer Science. 991;269(3): 222–226. https://doi.org/10.1007/bf00665495
Bedre J., Chandler D., Mize B. Method and system for manufacture and use of macroporous beads in a multiplex assay. Patent US9745438B2. 2009. Режим доступа: https://patents.google.com/patent/US9745438B2
Song J.S., Winnik M.A. Cross-linked, monodisperse, micron-sized polystyrene particles by twostage dispersion polymerization. Macromolecules. 2005;38(20): 8300–8307. DOI: https://doi.org/10.1021/ma050992z
Gao H., Matyjaszewski K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels. Progress in Polymer Science. 2009;34(4): 317–350. https://doi.org/10.1016/j.progpolymsci.2009.01.001
Yang C., Guan Y., Xing J., Liu J.; Shan G., An Z., Liu H. Preparation of magnetic polystyrene microspheres with a narrow size distribution. AIChE Journal. 2005;51(7): 2011–2015. https://doi.org/10.1002/aic.10467
Šálek P., Horák D. Hypercrosslinked polystyrene microspheres by suspension and dispersion polymerization. e-Polymers. 2011;11(1). https://doi.org/10.1515/epoly.2011.11.1.688
Kawaguchi H. Functional polymer microspheres. Progress in Polymer Science.2000;25(8): 1171-1210. https://doi.org/10.1016/S0079-6700(00)00024-1
Hong J., Lee J., Rhym Y. M., Kim D. H., Shim S. E. Polyelectrolyte-assisted synthesis of polystyrene icrospheres
by dispersion polymerization and the subsequent formation of silica shell. Journal of Colloid and Interface Science. 2010;344(2): 410–416. https://doi.org/10.1016/j.jcis.2010.01.001
Liu N., Li Y., Liang W., Liu Y. Fluorescence-encoded polystyrene microspheres for the application of suspension array technology. Materials for Biomedical Engineering. 2019: 221–267.
https://doi.org/10.1016/b978-0-12-818433-2.00007-8
Tobias C., Climent E., Gawlitza K., Rurack K. Polystyrene microparticles with convergently grown mesoporous silica shells as a promising tool for multiplexed bioanalytical assays. ACS Applied Materials & Interfaces. 2020;13(1): 207–218. https://doi.org/10.1021/acsami.0c17940
Serkhacheva N. S., Gainanova A. A., Kuz’michevaG. M., Podbelskiy V. V., Sadovskaya N. V., Zybinskiy A. M., Domoroshchina E. N., Dorokhov A. V., Chernyshev V. V., Prokopov N. I., Gerval’d A. Yu. Composites based on polystyrene microspheres with nano-scaled titanium dioxide. International Journal of Polymer Analysis and Characterization. 2015;20(8): 743–753. https://doi.org/10.1080/1023666x.2015.1081190
Liu G., Guan Y., Ge Y., Xie L. Preparation of monodisperse magnetic polystyrene microspheres and its surface chemical modification. Journal of Applied Polymer Science. 2011;120(6): 3278–3283. https://doi.org/10.1002/app.33495
Pushparaj P. N. Multiple analyte profiling (xMAP) technology coupled with functional bioinformatics strategies: potential applications in protein diomarker profiling in autoimmune inflammatory diseases. In: Shaik N., Hakeem K., Banaganapalli B., Elango R. (eds). Essentials of Bioinformatics, Volume II. Springer, Cham.; 2019. 151–165 pp. https://doi.org/10.1007/978-3-030-18375-2_9
Fulwyler M. J., Perrings J. D., Cram L. S. Production of uniform microspheres. Review of Scientific Instruments. 1973;44(2): 204–206. https://doi.org/10.1063/1.1686082
Copyright (c) 2021 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.