Evaluation of anthocyanines antioxidant properties using chromatography
Abstract
A method for assessing the antioxidant properties of anthocyanins was proposed, using a reaction with an aqueous solution of potassium permanganate followed by chromatographic determination of the concentration of various anthocyanins in complex mixtures in comparison with the original solution. The main feature of the method is the exclusion of the occurrence of a chain of successive oxidation reactions of each initial anthocyanin, which is actually observed when using traditional methods for determining antioxidant properties. For this purpose, a lack of oxidant was used, which should be consumed mainly in the first stages for each antioxidant, under the assumption that the activity of the initial (least oxidized) anthocyanin is higher than that of the products formed from it. Only such a scheme allows comparing antioxidant activity (as a time-dependent parameter instead of the usually determined antioxidant capacity) depending on the structure of the molecule. Based on a study of the oxidation of 3-glucosides with potassium permanganate of five different main natural anthocyanidins (in extracts of grape fruits and leaves of Cercis canadensis), a dependence of antioxidant activity was established, which increased in the series: Pn3Glu<Cy3Glu<Mv3Glu
<Pt3Glu<Dp3Glu. Consequently, the antioxidant activity of anthocyanins of the same type increased with the addition of an OH group to the B ring of the aglycone more strongly than the addition of a methoxy group. The analysis of anthocyanins from the fruits of grape variety Mercedes extract showed that the acylation of peonidin and malvidin 3-glucosides by p-coumaric acid did not lead to higher resistance. Therefore, the conclusion about higher stability of acylated anthocyanins are not always true. An analysis of the oxidability of various 3-glycosides by potassium permanganate was performed on the extract of black currant and red viburnum fruits and showed that in the first case, the oxidability does not reliably change when moving from 3-glucosides to 3-rutinoside. Moreover, in the second case, the addition of a second monoside to the existing 3-glucoside for both arabinoside and rhamnoside led to a decrease in activity. This indicates that accompanying extractives can alter the course of some reactions.
Downloads
References
Oksidativnyj stress i vospalenie: pato-geneticheskoe partnerstvo: Monografiya / Pod red. O. G. Hurcilavy, N. N. Pluzhniko-va, YA. A. Nakatisa. SPb.: SZGMU by. I. I. Mechnikov, 2012. 340 p. (In Russ).
Karadag A., Ozcelik B., Saner S. Re-view of Methods to Determine Antioxidant Capacities. Food Anal. Methods. 2009; 2: 41-60. https://doi.org/10.1007/s12161-008-9067-7
Apak R., Gorinstein S., Böhm V., Schaich K.M., Özyürek M., Güçlü K. Meth-ods of measurement and evaluation of natu-ral antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013; 85(5): 957-998. http://dx.doi.org/10.1351/PAC-REP-12-07-15/
Pisoschi A.M., Negulescu G.P. Methods for Total Antioxidant Activity Determination: A Review. Biochem. Anal. Biochem. 2011; 1: 1000106. https://doi.org/10.4172/2161-1009.1000106
Antolovich M., Prenzler P.D., Patsalides E., McDonald S., Robards K. Methods for testing antioxidant activity. Ana-lyst. 2002; 127: 183-198. https://doi.org/10.1039/b009171p
Shahidi F., Zhong Y. Measurement of antioxidant activity. J. Funct. Foods. 2015; 18: 757-781. https://doi.org/10.1016/j.jff.2015.01.047
Bartosz G., Bartosz M. Antioxidant ac-tivity: what do we measure? Acta Biochimica Polonica. 1999; 46(1): 23-39.
Anisimovich I.P., Deineka V.I., Deine-ka L.A., Frolov P.A., Myasnikova P.A. Par-ametry antioksidantnoj aktivnosti soedinenij: otnositel'naya antioksidantnaya aktivnost' chaya. Nauchnye vedomosti BelGU. 2010; 9(80)11: 104-111. (In Russ).
Kedare S.B., Singh R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011; 48(4): 412-422. https://doi.org/10.1007/s13197-011-0251-1
Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Byrne D.H. Com-parison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006; 19: 669-675. https://doi.org/10.1016/j.jfca.2006.01.003
Apak R., Güçlü K., Demirata B., Özyürek M., Çelik S.E., Bektaşoğlu B., Berker K.I., Özyurt D. Comparative Evalua-tion of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007; 12: 1496-1547. https://doi.org/10.3390/12071496
Tabart J., Kevers C., Pincemail J., Defraigne J.-O., Dommesa J. Comparative anti-oxidant capacities of phenolic compounds measured by various tests. Food Chem. 2009; 113: 1226-1233. https://doi.org/10.1016/j.foodchem.2008.08.013
Chandrasekar D., Madhusudhana K., Ramakrishna S., Diwan P.V. Determination of DPPH free radical scavenging activity by reversed-phase HPLC: A sensitive screening method for polyherbal formulations. J. Pharm. Biomed. Anal. 2006; 40: 460-464. https://doi.org/10.1016/j.jpba.2005.07.042
Dapkevicius A., van Beek T.A., Nie-derländer H.A.G. Evaluation and comparison of two improved techniques for the on-line detection of antioxidants in liquid chromatography eluates. J. Chromatogr. A. 2001. 912: 73-82. https://doi.org/10.1016/s0021-9673(01)00548-9.
Qiu J., Chen L., Zhu Q., Wang D., Wang W., Sun X., Liu X., Du F. Screening natural antioxidants in peanut shell using DPPH–HPLC–DAD–TOF/MS methods. Food Chem. 2012; 135: 2366-2371 http://dx.doi.org/10.1016/j.foodchem.2012.07.042
Makarevich S.L., CHulkov A.N., Deineka V.I., Kostenko M.O., Dejneka L.A., Tohtar' V.K. VEZHKH v opredelenii antocianov plodov nekotoryh vidov vinograda. Sorbtsionnye i khromatograficheskie protsessy. 2014; 14: 1024-1031. (In Russ.)
Zhao C.-L., Yu Y.-Q., Chen Z.-J., Wen G.-S., Wei F.-G., Zheng Q., Wang C.-D., Xiao X.-L. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem. 2017; 214: 119-128. https://doi.org/10.1016/j.foodchem.2016.07.073
Janeiro P., Oliveira Brett A.M. Redox Behavior of Anthocyanins Present in Vitis vinifera L. Electroanal. 2007; 19(17): 1779-1786. https://doi.org/10.1002/elan.200703941
Deineka L., Makarevich S.L., Deineka V., Chulkov A.N. HPLC of anthocyans with an amperometric detector: Evaluation of the antioxidant activity. J. Anal. Chem. 2015; 70(8): 989-994. https://doi.org/10.1134/S1061934815080079
Dejneka L.A., SHaposhnik E.I., Gostishchev D.A., Dejneka V.I., Sorokopu-dov V.N., Selemenev V.F. VEZHKH v kontrole antocianovogo sostava plodov chernoj smorodiny. Sorbtsionnye i khromatograficheskie protsessy. 2009; 9(4): 529-536. (In Russ.)
Dejneka V.I., CHulkov A.N., Dejneka L.A., Zhandarmova P.A., Sorokopudov V.N., Rybickij S.M. Opredelenie antocianov plodov nekotoryh vidov kaliny metodom VEZHKH. Sorbtsionnye i khromatograficheskie protsessy. 2014; 14(3): 434-442. (In Russ.)
Mohammed Y., Iyun J.F., Idris S.O. Kinetic approach to the mechanism of the redox reaction of malachite green and per-manganate ion in aqueous acidic medium. African Journal of Pure and Applied Chem-istry. 2009; 3(12): 269-274. https://doi.org/10.5897/AJPAC.9000084
Jones F., Anweting I.B., Okon I.E. Electron Transfer Reaction of Theobromine and Permanganate Ion in Aqueous Acidic Media. Asian Journal of Applied Chemistry Research. 2023; 13(2): 46-54. https://doi.org/10.9734/ajacr/2023/v13i2242
Insausti M.J., Mata-Perez F., Alvarez-MachoM. P. Kinetic Study of the Oxidation of L-Phenylalanine by Potassium Permanganate in Acid Medium. International Journal of Chemical Kinetics. 1995; 27: 507-515. https://doi.org/10.1002/kin.550270509
Panari R.G., Chougale R.B., Nandibewoor S.T. Oxidation of mandelic acid by alkaline potassium permanganate. A kinetic study. Journal of Physical Organic Chemistry. 1998; 11: 448-454. https://doi.org/10.1002/(SICI)1099-1395(199807)11:7<448::AID-POC23>3.0.CO;2-A