Simulation of the desorption process of desloratadine from alloys with polyethylene glycol-1500 (PEG) using the molecular dynamics method
Abstract
Desloratadine, a medicinal product with proved antihistamine activity, is currently present in three dosage forms on the pharmaceutical market: pills, solutions, and syrups. A significant factor hindering the development of new medicinal products based on desloratadine is its low solubility in water. It is therefore important to analyse the opportunities for creating new dosage forms of desloratadine which can be more soluble in water. Such dosage forms can be based on solid dispersions. Computer modelling is currently a promising technique used in pharmaceutical technologies to develop drug compositions. The purpose of our study was to perform a comparative analysis of the desorption process of desloratadine from alloys with polyethylene glycol-1500 into the dissolution medium based on the results of simulation of molecular dynamics. The desorption of desloratadine from alloys containing PEG was simulated by means of the molecular dynamics method using Gromacs 2023 programme, Amber 99 force field. The parametrisation of the force field for the molecules of the components in the simulated systems and the assembly of PEG polymer chains were performed using the ParmEd programme. Models of desloratadine alloys containing polyethylene glycol–1500 were built to study the desorption of desloratadine. The molecular dynamics was simulated by means of thermostatting and barostatting with a step of 2 fs for 25 ns. As a result of the simulation, we calculated the energy of interaction between desloratadine, the polymer, and the solvent per one molecule of desloratadine, and the number of desloratadine molecules that lost their bonds with PEG. The study of the desorption of desloratadine from alloys with polyethylene glycol–1500 carried out by means of the molecular dynamics method demonstrated that the maximum desorption of desloratadine with polyethylene glycol–1500 is achieved at the ratio of 1:2.
Downloads
References
State Pharmacopoeia of the Russian Federation XV [Electronic edition]. Access mode: https://pharmacopoeia.regmed.
ru/pharmacopoeia/izdanie-15/ (In Russ.)
Popović G., Čakar M., Agbaba D. Acid-base equilibria and solubility of loratadine and desloratadine in water and micellar media, J. Pharm. Biomed. Anal. 2009; 49: 42-47. https://doi.org/10.1016/j.jpba.2008.09.043
DuBuske L.M. Review of deslorata-dine for the treatment of allergic rhinitis, chronic idiopathic urticaria and allergic inflammatory disorders, Expert Opin. Pharmacother. 2005; 6: 2511-2523. https://doi.org/10.1517/14656566.6.14.2511
Ali S.M., Upadhyay S.K., Ma-heshwari A. NMR spectroscopic study of the inclusion complex of desloratadine with -cyclodextrin in solution, J. Incl. Phenom. Macrocycl. Chem. 2007; 59: 351-355. https://doi.org/10.1007/s10847-007-9335-y
Vasconcelos T., Marques S., das Neves J., Sarmento B. Amorphous solid dispersions: Rational selection of a manu-facturing process, Adv. Drug Deliv. Rev. 2016; 100: 85-101. https://doi.org/10.1016/j.addr.2016.01.012
Douroumis J.A., Zeitler S.Q. An in-vestigation into the formations of the inter-nal microstructures of solid dispersions prepared by hot melt extrusion, Eur. J. Pharm. Biopharm. 2020; 155: 147-161. https://doi.org/10.1016/j.ejpb.2020.08.018
Barea S.A., Mattos C.B., Cruz A.C, Chaves V.C., Pereira R.N., Simões C.M., Kratz J.M., Koester LS. Solid dispersions enhance solubility, dissolution, and perme-ability of thalidomide, Drug Dev Ind Pharm. 2017; 43(3): 511-518. https://doi.org/10.1080/03639045.2016.1268152
Liu X., Zhang Z., Jiang Y., Hu Y., Wang Z., Liu J., Feng R., Zhang J., Huang G. Novel PEG-grafted nanostructured lipid carrier for systematic delivery of a poorly soluble anti-leukemia agent Tamibarotene: characterization and evaluation, Drug De-liv. 2015; 22(2): 223-9. https://doi.org/10.3109/10717544.2014.885614
Le Khanh H.P., Haimhoffer Á., Nemes D., Józsa L., Vasvári G., Budai I., Bényei A., Ujhelyi Z., Fehér P., Bácskay I. Effect of Molecular Weight on the Dissolu-tion Profiles of PEG Solid Dispersions Containing Ketoprofen, Polymers. 2023; 15(7): 1758. https://doi.org/10.3390/polym15071758
Bolourchian N. Mahboobian M.M., Dadashzadeh S. The effect of PEG molecu-lar weights on dissolution behavior of simvastatin in solid dispersions, Iran J Pharm Res. 2013; 12: 11-20.
Eastman P., Swails J., Chodera J.D., McGibbon R.T., Zhao Y., Beauchamp K.A., Wang L.P., Simmonett A.C., Harri-gan M.P., Stern C.D. OpenMM 7: Rapid Development of High Performance Algo-rithms for Molecular Dynamics, PLoS Comput. Biol. 2017; 13: 1-17. https://doi.org/10.1371/journal.pcbi.1005659
Walden D.M., Bundey Y., Jagarapu A., Antontsev V., Chakravarty K., Varsh-ney J. Molecular Simulation and Statistical Learning Methods toward Predicting Drug-Polymer Amorphous Solid Dispersion Mis-cibility, Stability, and Formulation Design, Molecules. 2021; 26(1): 182. https://doi.org/10.3390/molecules26010182
Chan T., Ouyang D. Investigating the molecular dissolution process of binary solid dispersions by molecular dynamics simulations, Asian J Pharm Sci. 2018; 13(3): 248-254. https://doi.org/10.1016/j.ajps.2017.07.011
Ortiz A.C., Yañez O., Salas-Huenuleo E., Morales J.O. Development of a Nanostructured Lipid Carrier (NLC) by a Low-Energy Method, Comparison of Re-lease Kinetics and Molecular Dynamics Simulation, Pharmaceutics. 2021; 13(4): 531. https://doi.org/10.3390/pharmaceutics13040531
Fița A.C., Secăreanu A.A., Musuc A.M., Ozon E.A., Sarbu I., Atkinson I., Rusu A., Mati E., Anuta V., Pop A.L. The Influence of the Polymer Type on the Qual-ity of Newly Developed Oral Immediate-Release Tablets Containing Amiodarone Solid Dispersions Obtained by Hot-Melt Extrusion, Molecules. 2022; 27(19): 6600. https://doi.org/10.3390/molecules27196600
Polkovnikova Yu.A., Koryanova K.N., Vasilevskaya E.S. The influence of solid dispersions with PEG-1500 on the na-ture of the release of vinpocetine, Russian Journal of Biopharmaceuticals. 2019; 11(5): 62-69 (In Russ.).
Smirnova T.D., Shtykov S.N. Ener-gy transfer in nanosystems: application in luminescent analysis. Nanoobjects and nanotechnologies in chemical analysis. 2015; 20: 123-150. (In Russ.)
Abraham M.J., Murtola T., Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, Soft-wareX. 2015; 1-2: 19-25. https://doi.org/10.1016/j.softx.2015.06.001
Sorin E.J., Pande V.S. Exploring the helix-coil transition via all-atom equilibri-um ensemble simulations, Biophysical journal. 2005; 88(4): 2472-2493. https://doi.org/10.1529/biophysj.104.051938
Polkovnikova Yu.A., Glizhova T.N., Arutyunova N.V., Sokulskaya N.N. PEG-4000 Increases solubility and dissolu-tion rate of vinpocetin in solid dispersion system, Chimica Techno Acta. 2022; 9(S): 202292S11. https://doi.org/ 10.15826/chimtech.2022.9.2.S11
Teppen J.B. HyperСhem, release 2: molecular modeling for the personal com-puter, J. Chem. Inf. Comput. Sci. 1992; 32: 757-759.
Selemenev V.F., Rudakova L.V., Rudakov O.B., Belanova N.A., Mironenko N.V. Vitamins as objects of food chemistry and pharmacology. Voronezh. Publishing-polygraphcenter "Scientific Book". 2022. 212 p. (In Russ.)
Shirts M.R., Klein C., Swails J.M., Yin J., Gilson M.K., Mobley D.L., Case D.A., Zhong E.D. Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset, J. Comput. Aided Mol. Des. 2017; 31: 147-161. https://doi.org/10.1007/s10822-016-9977-1
Bekker H.E., Dijkstra J., Renardus M.K.R., Berendsen H.J.C. An efficient, box shape independent non-bonded force and virial algorithm for molecular dynamics, Mol. Sim. 1995; 3; 14: 137-152. https://doi.org/10.1080/08927029508022012
Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. Molecular dynamics with coupling to an external bath, J. Chem. Phys. 1984; 81: 3684-3690. https://doi.org/10.1063/1.448118
Braga C., Travis K.P. A configura-tional temperature Nosé-Hoover thermo-stat, The Journal of Chemical Physics. 2005; 123(13): 134101. https://doi.org/10.1063/1.2013227
Parrinello M., Rahman A. Polymor-phic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 1981; 52: 7182-7190. https://doi.org/10.1063/1.328693
Selemenev V.F., Rudakova L.V., Rudakov O.B., Belanova N.A., Mironenko N.V., Butyrskaya E.V. Lipidomics. Voronezh. Publishing-polygraphcenter "Scientific Book". 2023. 316 p. (In Russ.)
Morice P. Surface and interphase boundaries. From the nanoscale to the global scale. M: BINOM. Knowledge Laboratory. 2015. 540 p. (In Russ.)