Comparative assessment of the thermostability of free and immobilised inulinase on hypercrosslinked polymers

  • Irina V. Shkutina St. Petersburg State Pediatric Medical University, St. Petersburg, Russian Federation
  • Natalia V. Mironenko Voronezh State University, Voronezh, Russian Federation
  • Vladimir F. Selemenev Voronezh State University, Voronezh, Russian Federation
  • Margarita K. Davydova St. Petersburg State Pediatric Medical University, St. Petersburg, Russian Federation
  • Ludmila N. Kolomiets Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Mos-cow, Russian Federation
Keywords: inulinase, immobilisation, catalytic activity, thermal inactivation, inactivation constant, activation energy

Abstract

This study demonstrates the possibility of using heterogeneous biocatalysts in catalytic transformation reactions of inulin-containing raw materials. Binding of enzymes to carriers of different nature determines the potential for the use of immobilised enzymes as specific, regenerable, and resistant to denaturing environmental factors biocatalysts. In this study, we used styrene-divinylbenzene hypercrosslinked macroporous sorbents as carriers for the adsorption immobilisation of inulinase: cation exchangers C100H (strongly acidic) and C104 (weakly acidic) based on styrene and divinylbenzene and anion exchangers A100 (low-basic) and А500R (highly basic).

It was determined that the amount of enzyme bound to the carriers as well as the activity of immobilised inulinase depend on the concentration of hydrogen ions. It was shown that the value of the sorption parameter reaches its maximum value at pH 4.7-5.0. We observed the highest amount of sorbed protein using cation exchangers C100H (0.95 mmol/g) and C104 (0.88 mmol/g). The activity of the obtained heterogeneous biocatalysts at this level of the medium pH is 64.8-83.5% of the activity of free inulinase.

We also studied the effect of temperature (in the range of 40-70 C) on the inactivation of free and bound inulinase at the optimum pH of the medium. The kinetic parameters of the inactivation process were calculated. We determined that in the considered temperature range, the inactivation constants and activation energy of immobilised inulinase are lower compared to the native enzyme. The observed regularities suggest further study and practical use of the heterogeneous biocatalyst.

Downloads

Download data is not yet available.

Author Biographies

Irina V. Shkutina, St. Petersburg State Pediatric Medical University, St. Petersburg, Russian Federation

PhD, assistant professor of General and Medical Chemistry Department named after  prof. V.V. Khorunzhii, State Pediatric Medical University, St. Petersburg; Russia, e-mail: irn55@mail.ru

Natalia V. Mironenko, Voronezh State University, Voronezh, Russian Federation

PhD, assistant professor of the Department of Natural Sciences, assistant professor of Analytical Chemistry Department of Chemistry Faculty, Voronezh State University, Voronezh; Russia, е-mail: natashamir@yandex.ru

Vladimir F. Selemenev, Voronezh State University, Voronezh, Russian Federation

doctor of science, professor of Analytical Chemistry Department of Chemistry Faculty, Voronezh State University, Voronezh, Russia; е-mail: common@chem.vsu.ru

Margarita K. Davydova, St. Petersburg State Pediatric Medical University, St. Petersburg, Russian Federation

PhD, assistant professor of General and Medical Chemistry Department named after  prof. V.V. Khorunzhii, State Pediatric Medical University, St. Petersburg; Russia, е-mail: mkd69@mail.ru

Ludmila N. Kolomiets, Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Mos-cow, Russian Federation

researcher, Ph.D. Frumkin Insti-tute of Phisical and Electrochemistry, Moscow, Russia; e-mail: kolom_moscow@mail.ru

References

Hafiz M.B., Iqbal M.N., State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector - current status and future trends, Crit Rev Food SciNutr, 2020; 60(12): 2052-2066. https://doi.org/10.1080/10408398.2019.1627284

Baranova, A.G., Zajko G.M., Raz-rabotka tehnologii instantnyh produktov dlja pitanija diabetikov, News of universi-ties. Food technology, 2014; 2-3: 29-31. (In Russ.)

Rochf J.R., Catana R., Ferreira B.S., Cabral J.M.S., Fernandes P., Design and characterization of an enzyme system for inulin hydrolysis, Food Chemistry, 2006; 95: 77-82. https://doi.org/10.1016/j.foodchem.2004.12.020

Xu Y., Zheng Z., Xu Q., Yong Q., Ouyang J., Efficient conversion of inulin to inulooligosaccharides through en-doinulinase from Aspergillus niger, J. Agric. Food Chem., 2016; 64(12): 2612-2618. https://doi.org/10.1021/acs.jafc.5b05908

Chi Z.-M., Zhang T., Cao T.-Sh., Liu X.-Y., Cui W., Zhao Ch.-H., Biotechnolog-ical potential of inulin for bioprocesses, Bioresour. Technol., 2011; 102(6): 4295-4303. https://doi.org/10.1016/j.biortech.2010.12.086.

Singh R.S., Singh R.P., Production of fructooligosaccharides from inulin by en-doinulinases and their prebiotic poten-tial,Food Technol. Biotechnol, 2010; 48(4): 435-450. https://doi.org/10.1016/j.foodchem.2022.132253

Singh R.S., Chauhan K., Production, purification, characterization and applica-tions of fungal inulinases, Curr. Biotech-nol., 2018; 7(3): 242-260. https://doi.org/10.2174/2211550105666160512142330.

Ali S., Shahzadi H., Nutritional opti-mizations for improved exo-inulinase pro-duction from Aspergillus oryzae for high fructose syrup preparations,Int. J. Curr. Microbiol. App. Sci.,2015; 4(5): 618-631.

Ricca E., Calabrò V., Curcio S., Iorio G., The state of the art in the production of fructose from inulin enzymatic hydrolysis. Crit. Rev. Biotechnol., 2007; 27(3): 129-145. https://doi.org/10.1080/07388550701503477

Santa G.L., Bernardino S.M., Magalhães S., Mendes V., Marques M.P., Fonseca L.P., Fernandes P., From inulin to fructose syrups using sol-gel immobilized inulinase, Appl.Biochem.Biotechnol., 2011; 165: 2-12. https://doi.org/10.1007/s12010-011-9228-9

Ricca E., Calabrò V., Curcio S., Bas-so A., Gardossi L., Iorio G., Fructose pro-duction by inulinase covalently immobi-lized on sepabeads in batch and fluidized bed bioreactor, Int. J. Mol. Sci., 2010; 11(3): 1180-1189. https://doi.org/10.3390/ijms11031180

Beran M., Pinkrová J., Urban M., Drahorád J., Immobilisation of en-doinulinase on polyhydroxybutyratemicro-fibres, Czech. J. Food Sci., 2016; 34(6); 541-546. https://doi.org/10.17221/72/2016-cjfs

Holyavka M.G., Koroleva V.A., Makin S.M., Olshannikova S.S., Kon-dratyev M.S., Samchenko A.A., Kabanov A.V., Kayumov A.R, Artyukhov V.G., Mechanisms of the adsorption immobiliza-tion of inulinase on ion-exchangers AV-17-2P and KU-2 matrices, Bulletin of Voro-nezh State University. Series «Chemistry. Biology. Pharmacy», 2017; 3: 86-90. (In Russ.)

JulianoMissau J., Scheid A.J., Fo-letto E.L., Jahn S., Marcio A, Mazutti M., Kuhn R., Immobilization of commercial inulinase on alginate-chitosan beads, Sus-tainable Chemical Processes. 2014; 2(1): 13-27. https://doi.org/10.1186/2043-7129-2-13

Karimi M., Habibi-Rezaei M., Re-zaei K., Moosavi-Movahedi A., Kokin J., Immobilization of inulinase from Aspergil-lus niger on octadecyl substituted nanopo-rous silica; Inulin hydrolysis in a continu-ous mode operation, Biocatalysis and Agri-cultural Biotechnology, 2016; 7: 174-180. https://doi.org/10.1016/j.bcab.2016.06.001

Altunbaş C., Uygun M., Uygun D.A., Akgöl S., Denizli A., Immobilization of inulinase on concanavalin A-attached super macroporouscryogel for production of high-fructose syrup, Appl. Biochem. Bio-technol., 2013; 170(8): 1909-1921. https://doi.org/10.1007/s12010-013-0322-z

Silva F.R., Santana C.C., Adsorp-tion of inulinases in ion-exchange columns, Appl. Biochem. Biotechnol., 2000; 84: 1063-1078.https://doi.org/10.1385/abab:84-86:1-9:1063

de Oliveira G., Kuhn G., Rosa C.D., Silva M.F., Treichel H., de Oliveira D., Oliveira J.V., Synthesis of fructooligosac-charides from Aspergillus niger commer-cial inulinase immobilized in montmorillo-nite pretreated in pressurized propane and LPG, Appl.Biochem.Biotechnol., 2013; 169(3): 750-760. https://doi.org/10.1007/s12010-012-0007-z

Yewale T., Singhal R.S., Vaidya A.A., Immobilization of inulinase from Aspergillus niger NCIM 945 on chitosan and its application in continuous inulin hy-drolysis, Biocatal. Agric. Biotechnol, 2013; 2: 96-101. https://doi.org/10.1016/j.bcab.2013.01.001

Mateo C., Palomo J.M., Fernandez-Lorente G., Guisan J., Fernandez-Lafuente R., Improvement of enzyme activity, sta-bility and selectivity via immobilization techniques, Enzyme Microb. Technol., 2007; 40(6): 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018

Liese A., Hilterhaus L., Evaluation of immobilized enzymes for industrial ap-plications, Chemical Society Reviews, 2013; 42(15): 6236-6249. https://doi.org/10.1039/c3cs35511j

Cjurupa M.P., Blinnikova Z.K., Pav-lova L.A., Pastuhov A.V., Davankov V.A., Sverhsshitomu polistirolu polveka: ot netrivial'noj idei do promyshlennoj, Labor-atory and production, 2020; 11(1): 86-96. (In Russ.) https://doi.org/10.32757/2619-0923.2020.1.11.86.96

Selemenev V.F., Slavinskaja G.V., Hohlov V.Ju., Ivanov V.A., Gorshkov V.I., Timofeevskaja V.D. Praktikum po ionno-mu obmenu. Voronezh, Voronezh Univer-sity Publishing House, 2004, 160 p. (In Russ.)

Nakamura T., Nakatsu S., General properties of extracellarinulase from Peni-cillum, J. Agr. Chem. Loc. Jap., 1997; 1(12): 681-689.

Holjavka M.G., Dubovickaja A.N., Sakibaev F.A., Shkutina I.V., Mironenko N.V., Selemenev V.F., Artjuhov V.G., Za-konomernosti adsorbcionnoj immobilizacii inulinaz na voloknistyh polijelektrolitah AK-22, AK-22-1, K-1, K-4, K-5, Sorbtsionnye i khromatograficheskiyec protsessy, 2020; 20(4): 523-538. (In Russ.) https://doi.org/10.17308/sorpchrom.2020.20/2957

Shkutina I.V., Mironenko N.V., Sel-emenev V.F., Application of super-crosslinked polymers as carriers of hetero-geneous biocatalysts for inulin hydrolysis reaction, ChemChemTech., 2022; 65(8): 48-54. https://doi.org/10.6060/ivkkt.20226508.6559

Selemenev V.F., Shkutina I.V., Mironenko N.V., Belanova N.A., Sinjaeva L.A., Belanova A.A., Kolomiec L.N., Ob osobennostjah stroenija aktivnogo centra i chetvertichnoj struktury inulinazy, Sorbtsionnye i khromatograficheskiyec protsessy, 2023; 23(5): 741-752. https://doi.org/10.17308/sorpchrom.2023.23/11692 (InRuss.)

Varfolomeev S.D Himicheskaja jen-zimologija. Moscow, Academy Publ., 2005, 480 p. (In Russ.)

Bajramov V.M Osnovy himicheskoj kinetiki i kataliza. Moscow, Academy Publ., 2003. 256 p. (In Russ.)

Catana R., Eloy M., Rocha J.R., Ferreira B.S., Cabral J.M.S., Fernandes P., Stability evaluation of an immobilized en-zyme system for inulin hydrolysis, Food Chem., 2007; 101: 260-266. https://doi.org/10.1016/j.foodchem.2006.01.042

Garuba E., Onilude A., Immobiliza-tion of thermostable exo-inulinase from mutant thermophilic Aspergillus tamarii-U4 using kaolin clay and its application in inulin hydrolysis, J Genet Eng Biotechnol., 2018; 16(2): 341-346.https://doi.org/10.1016/j.jgeb.2018.03.009

Published
2024-12-08
How to Cite
Shkutina, I. V., Mironenko, N. V., Selemenev, V. F., Davydova, M. K., & Kolomiets, L. N. (2024). Comparative assessment of the thermostability of free and immobilised inulinase on hypercrosslinked polymers. Sorbtsionnye I Khromatograficheskie Protsessy, 24(5), 672-681. https://doi.org/10.17308/sorpchrom.2024.24/12507

Most read articles by the same author(s)