Corporate fraud matters if you control firm leverage: evidence from the Russian bond market
Abstract
Importance: financial market turbulence and worldwide economic decline present new challenges to the participants of the bond market. One of these challenges is related to the quality of information on firms’ activities provided to stakeholders.
Purpose: identifying price anomalies in the rouble bond market caused by expectations of fraudulent activities of corporate issuers towards the falsification of information revealed in financial statements (accounting fraud) and of the firms capital structure.
Methods: we consider four working hypotheses on the influence of the capital structure and the tendency of firms towards fraudulent activities on the falsification of reported information. We examine the excess returns and factor model based risk-adjusted returns of bond portfolios consisting of firms with different levels of fraud risk controlling firm capital structure and then check whether our results are robust with respect to bond market hidden states. We use the Hidden Markov Model to recover the sequence of bond market states based on spread of 30-year minus 3-months government bond yields. The authors performed data analysis in RStudio. The sample covers the period from January 2011 to December 2022.
Results: this paper provides evidence of the significant contribution of the newly proposed risk factor, corresponding with corporate fraud controlling for firm capital structure, to the explanatory power of asset pricing models for bond portfolios excess returns. We then introduce hidden bond market states based on spread of government bond yields and show that proposed market states are statistically and economically significant. We further examine the state-dependent explanatory power of the risk factors for test portfolios. We find the strong evidence that the rouble corporate bond market is ineffective in relation to information on the possible firms accounting fraud.
Conclusions: Investors in the Russian bond market should account for bond exposure to the accounting fraud risk factor in the risk-adjusted performance analysis of bond portfolios.
Metrics
References
Acharya, V. V., Amihud, Y., Bharath, S. T. (2013). Liquidity risk of corporate bond returns: Conditional approach. Journal of Financial Economics, 2 (110), 358-386.
Allozi, N. M., Obeidat, G. S. (2016). The Relationship between the Stock Return and Financial Indicators (Profitability, Leverage): An Empirical Study on Manufacturing Companies Listed in Amman Stock Exchange. Journal of Social Sciences, 5(3), 408-424.
Arditti, F. D. (1967). Risk and Return on Equity. Journal of Finance, 22(1), 19-36.
Beneish, M. D. (1999). The Detection of Earnings Manipulation. Financial Analysts Journal, 5(55), 24-36.
Beneish, M. D., Farber, D. B., Glendening, M., Shaw, K. W. (2023). Aggregate Financial Misreporting and the Predictability of U.S. Recessions and GDP Growth. The Accounting Review, 98(5). 129-159. https://doi.org/10.2308/TAR-2021-0160
Beneish, M. D., Lee, C. M. C., Nichols, D. C. (2013). Earnings manipulation and expected returns. Financial Analysts Journal, 69(2), 57-82.
Bhandari, L. C. (1988). Debt/Equity Ratio and Expected Common Stock Returns: Empirical Evidence. Journal of Finance, XLIII, 507-528.
Bhatt, V., Sultan, J. (2012). Leverage Risk, Financial Crisis, and Stock Returns: A Comparison Among Islamic, Conventional, and Socially Responsible Stocks. Islam. Econ. Stud, 20, 87-119.
Dickerson, A., Mueller, P., Robotti, C. (2023). Priced risk in corporate bonds. Journal of Financial Economics, 150(2), 103707. https://doi.org/10.1016/j.jfineco.2023.103707
Dimitrov, V., Jain, P. C. (2005). The Value Relevance of Changes in Financial Leverage. SSRN. http://dx.doi.org/10.2139/ssrn.708281
Endovitsky, D. A., Korotkikh, V. V., Khripushin, D. A. (2021). Equity risk and return across hidden market regimes. Risks. 9(11), 188. https://doi.org/10.3390/risks9110188.
Fama, E., French K. (1993). Common risk factors on stocks and bonds. Journal of Financial Economics, 33(1), 3-56. https://doi.org/10.1016/0304-405X(93)90023-5
Jaroszek, L., Niessen-Ruenzi, A., Ruenzi, S. (2018). Corporate Fraud Risk and Stock Market Performance. SSRN Electronic journal. URL: https://dx.doi.org/10.2139/ssrn.2636633
Penman, S. H., Richardson, S. A., Tuna, I. (2007). The Book-to-Price Effect in Stock Returns: Accounting for Leverage. Journal of Accounting Research, 45(2), 427-467.
Ullah, I., Shah, A. (2014). The Effect of Capital Structure on Abnormal Stock Returns: Evidence from Pakistan. Business & Economic Review, 6, 1-18.
Ендовицкий, Д. А., Коротких, В. В. (2022). Оценка влияния масштабов национальных фондовых рынков и различных кризисных явлений в экономике на уровень рисков операций с финансовыми инструментами. Вестник ВГУ. Серия: Экономика и управление, (1), 3-27. [Endovitsky, D. А., Korotkikh, V. V. (2022). Regime shifts in equity risk premium: international evidence. Proceedings of Voronezh State University. Series: Economics and Management, (1), 3-27. (In Russian).] https://doi.org/10.17308/econ.2022.1/3842
Коротких, В. В. (2022). Сравнительный статистический анализ структуры премии за риск на фондовых рынках разных стран. Вестник ВГУ. Серия: Экономика и управление, (2), 83-98. [Korotkikh, V. V. (2022). Term structure of risk factor premiums: evidence from international equity markets. Proceedings of Voronezh State University. Series: Economics and Management, (2), 83-98. (In Russian).] https://doi.org/10.17308/econ.2022.2/8989
Коротких, В. В. (2023). Риск искажения финансовой отчетности и доходность корпоративных облигаций: свидетельства с Московской биржи. Финансы и кредит, 29(12), 2813-2840. [Korotkikh, V. V. (2023). Corporate fraud, inertia and market conditions in explaining the differences in the exchange characteristics of bonds in the Russian market. Finance and Credit, 29(12), 2813-2840. (In Russian).] https://doi.org/10.24891/fc.29.12.2813
Теплова, Т. В., Соколова, Т. В. (2017). Непараметрический метод оболочечного анализа для портфельных построений на российском рынке облигаций. Экономика и математические методы, 53(3), 110-128. [Teplova, T.V., Sokolova, T.V. (2017). The non-parametric data envelopment analysis method for portfolio design in the Russian bond market. Economics and Mathematical Methods, 53(3), 110-128. (In Russian).]
Ферулева Н. В., Штефан М. А. (2016). Выявление фактов фальсификации финансовой отчетности в российских компаниях: анализ применимости моделей Бениша и Роксас. Российский журнал менеджмента, 14(3), 49-70. [Feruleva N.V., Shtefan М.А. (2016). Detection of Financial Statements Fraud in Russian Companies: Analysis of the Beneish and Roxas Models Applicability. Russian Management Journal, 14(3), 49-70. (In Russian.)]

This work is licensed under a Creative Commons Attribution 4.0 International License.