Deposition of zinc sulphide films from thiourea complexes and a study of their optical properties

Keywords: Thiourea complex compounds, Aerosol pyrolysis, Zinc sulphide, Films, Optical band gap

Abstract

       This work presents the results of a study of zinc sulphide films deposited by aerosol pyrolysis from aqueous solutions of thiourea complex compounds [Zn(N2H4CS)2Cl2] and [Zn(N2H4CS)2Br2] in the temperature range of 350–500 °C.
        The IR and Raman spectra of zinc complexes were studied. It was determined that in the studied complexes, the thiourea molecule was coordinated to the metal cation through the sulphur atom. In the low-frequency Raman region (n < 400 cm–1), we recorded the bands characterising the vibrations of the zinc-sulphur and zinc-chlorine (bromine) bonds of the studied complex compounds in the Raman scattering spectra. The optical properties of zinc sulphide films were studied using optical spectrophotometry. Based on the absorption spectra, the optical band gap of ZnS films was determined. It was 3.67–3.74 eV and 3.63–3.70 eV for the samples deposited from [Zn(N2H4CS)2Cl2] and [Zn(N2H4CS)2Br2] complexes, respectively.
We recorded a decrease in the band gap of the synthesised layers upon an increase in the deposition temperature. It is due to changes in their defect structure.
        One of the main types of defects in the ZnS films deposited from [Zn(N2H4CS)2Cl2] and [Zn(N2H4CS)2Br2] complexes is a halogen atom in the anion sublattice of the sulphide (ClS˙, BrS˙). As the deposition temperature increases, the content of these defects in the films decreases due to the complete destruction of Zn–Cl and Zn–Br bonds and volatilisation of halogen during the thermolysis of the complexes. Oxygen (OSх) occupies the vacated places of ClS˙, BrS˙. The films contained oxygen as they were synthesised in an oxidising atmosphere and due to partial hydrolysis of the initial zinc salt. An increase of oxygen content in the samples upon an increase of the deposition temperature results in a decrease of the optical band
gap of the ZnS films.

Downloads

Download data is not yet available.

Author Biographies

Tatyana V. Samofalova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Chem.),
Associate Professor at the Department of General and
Inorganic Chemistry, Voronezh State University
(Voronezh, Russian Federation)

Victor N. Semenov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Chem.), Full Professor,
Head of the Department of General and Inorganic
Chemistry, Voronezh State University (Voronezh,
Russian Federation)

Pavel V. Seredin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.), Professor,
Head of the Department of Solid State Physics and
Nanostructures, Voronezh State University (Voronezh,
Russian Federation)

Dmitry L. Goloshchapov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.),
Associate Professor at the Department of Solid State
Physics and Nanostructures, Voronezh State University
(Voronezh, Russian Federation)

Nikita S. Buylov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.), Research
Assistant, Laboratory of organic additives for the
processes of chemical and electrochemical deposition
of metals and alloys used in the electronics industry,
Voronezh State University (Voronezh, Russian
Federation)

References

Sychov M. M., Ogurtsov K. A., Bakhmetyev V. V., Kotomin A. A., Dushenok S. A., Kozlov A. S., Lebedev V. T., Kulvelis Y. V., Sokolov A. E., Trunov V. A., Török Gy. Effect of the Cu content and ZnS treatment on the characteristics of synthesized ZnS:(Cu, Cl) electroluminescent phosphors. Semiconductors. 2012; 46(5): 696–700. https://doi.org/10.1134/S1063782612050223

Bacherikov Yu. Yu., Kitsyuk N. V. Doped ZnS phosphors with a constant spectral density in the 500–750 nm range. Technical Physics. 2005;50(5): 658–659. https://doi.org/10.1134/1.1927225

Semenov V. N., Naumov A.V. Proceses of directed synthesis of metal sulfide films from the thiocarbamide coordination compounds*. Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Himija. Biologija. Farmacija. 2000;2: 50–55. (In Russ.). Available at: https://elibrary.ru/item.asp?id=21847224

Naumov A. V., Samofalova T. V., Semenov V. N., Nechaev I. V. Thiourea complexes in synthesis of CdxZn1–xS solid solutions. Russian Journal of Inorganic Chemistry. 2011;56(4): 621–627. https://doi.org/10.1134/S0036023611040218

Samofalova T. V., Semenov V. N. Films based on a solid solution of CdS-ZnS system from thiourea coordination compounds and their properties. Russian Journal of Applied Chemistry. 2013;86(12): 1811–1818. https://doi.org/10.1134/S1070427213120021

Ugaj Ya. A., Semenov V. N. Interaction of thiourea with zinc salts in the preparation of ZnS films*. Russian Journal of General Chemistry. 1989;59(10): 2177–2185. (In Russ.). Available at: https://elibrary.ru/item.asp?d=28900634

Ukhanov Yu . I . Optical properties of semiconductors*. Moscow: Nauka Publ.; 1977. 361 p. (In Russ.).

Kharitonov Yu. Ya., Brega V. D., Ablov A. V., Proskina N. N. IR absorption spectra and normal vibrations of metal complexes with thiourea*. Russian Journal of Inorganic Chemistry. 1974;19(8): 2166–2177. (In Russ.)

Kharitonov Yu. Ya., Brega V. D., Ablov A. V. On normal vibrations of complex compounds of PdII and CdII with thiourea*. Russian Journal of Inorganic Chemistry. 1971;16(2): 572–573. (In Russ.)

Serrano J. Cantarero A., Cardona M., Garro N., Lauck R., Tallman R. E., Ritter T. M., Weinstein B. A. Raman scattering in b-ZnS. Physical Review B. 2004;69: 1–11. https://doi.org/10.1103/PHYSREVB.69.014301

Kumari R. G., Ramakrishnana V., Carolinb M. L., Kumar J., Saruac A., Kuball M. Raman spectral investigation of thiourea complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2009;73(2): 263–267. https://doi.org/10.1016/j.saa.2009.02.009

Selvasekarapandian S., Vivekanandian K., Kolandaivel P., Gundurao T. K. Vibrational studies of bis(thiourea) cadmium chloride and tris(thiourea) zinc sulphate semiorganic non-linear optical crystals. Crystal Research and Technology. 1997;32(2): 299–309. https://doi.org/10.1002/(SICI)1097-4555(199710)28:10<779::AID-JRS147>3.0.CO;2-5

Sidorov A. I, Tung N. D., Van Wu. N., Antropova T. V., Nashchekin A. V. Optical properties of nanocomposites on base of zinc and tin sulfides in nanoporous glass. Optics and Spectroscopy. 2019;127(5): 914–918. https://doi.org/10.1134/S0030400X19110237

RRUFF Database of Raman spectroscopy, X-ray diffraction and chemistry of minerals. Available at: https://rruff.info/15. Irish D. E., Young T. F. Raman spectrum of

molten zinc chloride. The Journal of Chemical Physics. 1965; 43 (5): 1765–1768. https://doi.org/10.1063/1.1697005

Alsayoud A. Q. , Venkateswara M. R. , Edwards A. N., Deymier P. A., Muralidharan K., Potter B. G., Runge Jr. K., Lucas P. Structure of ZnCl2 Melt. Part I: Raman spectroscopy analysis driven by Ab Initio methods. The Journal of Physical Chemistry B. 2016;120(17): 4174–4181. https://doi.org/10.1021/acs.jpcb.6b02452

Heumen J. V., Ozeki T., Irish D. Raman spectral study of the equilibria of zinc bromide complexes in DMSO solutions. Canadian Journal of Chemistry. 1989;67: 2030–2036. https://doi.org/10.1139/V89-314

Kalman E., Serke I., Palinkas G. Complex formation in an aqueous ZnBr2 solution based on electron diffraction, X-ray scattering and Raman spectra. Zeitschrift fur Naturforschung. 1983;38(2): 225–230. https://doi.org/10.1515/zna-1983-0220

Oussad M., Becker P., Kemiche M., Carabatos-Nedelec C. Low temperature phase transitions in zinc tris (thiourea) sulfate (ZTS) determined by Raman scattering. Physica Status Solidi B. 2000;222: 553–561. https://doi.org/10.1002/(SICI)1521-3951(199805)207:1<103::AID-PSSB103>3.0.CO;2-L

Hase Y., Airoldi C., Gushikem Y., Kawano Y. Raman spectra of Zn(CH3CN)2X2 (X= C1, Br and I). Spectroscopy Letters. 1976;9(2): 105–118. https://doi.org/10.1080/00387017608067418

Ishikawa D. N., Tellez S. C. A. Infrared and Raman spectra of Zn(NH3)2Br2 with 15N and 2H isotopic substitution. Vibrational Spectroscopy. 1994;8: 87–95. https://doi.org/10.1016/0924-2031(94)00014-8

Vishwakarma R. Effect of substrate temperature on ZnS films prepared by thermal evaporation technique. Journal of Theoretical and Applied Physics. 2015;9:185–192. https://doi.org/10.1007/s40094-015-0177-5

Offor P. O., Okorie B. A., Ezekoye B. A., Ezekoye V. A., Ezema J. I. Chemical spray pyrolysis synthesis of zinc sulphide (ZnS) thin films via double source precursors. Journal of Ovonic Research. 2015;11(2): 73–77. Режим доступа: https://chalcogen.ro/73_Offor.pdf

Physical Quantities: Handbook. I. S. Grigor’ev, E. Z. Meilikhov (eds.). Moscow: Energoatomizdat Publ., 1991. 1232 p. (in Russ.)

Faraj M. G., Taboada P. Structural and optical properties of ZnO thin films prepared by spray pyrolysis on PI plastic substrates at various temperatures for integration in solar cell. Journal of Materials Science: Materials in Electronics. 2017;28: 16504–16508. https://doi.org/10.1007/s10854-017-7562-6

Published
2022-11-01
How to Cite
Samofalova, T. V., Semenov, V. N., Seredin, P. V., Goloshchapov, D. L., & Buylov, N. S. (2022). Deposition of zinc sulphide films from thiourea complexes and a study of their optical properties. Condensed Matter and Interphases, 24(4), 529-536. https://doi.org/10.17308/kcmf.2022.24/10557
Section
Original articles

Most read articles by the same author(s)