Synchrotron XANES studies of epitaxial tin-silicon solid solutions nanolayers

Keywords: Tin, Silicon, Tin and silicon oxides, Electronic structure, Density of states, Local atomic surrounding, Composition, Epitaxial solid solutions, X-ray absorption near edge structure, Synchrotron investigations

Abstract

Purpose: Functional tin and silicon-based materials and thin-film structures based on them are promising objects for microelectronics devices. An important issue for the study and subsequent application of such materials and structures is the properties control under formation technological regimes variations.

Experimental: The specificity of the local atomic surrounding and the features of the electronic structure of tin-silicon solid solutions have been studied by X-ray absorption near edge structure spectroscopy using synchrotron radiation. Nanolayer structures of tin-silicon solid solutions on buffer silicon nanolayers were formed using molecular beam epitaxy.

Conclusions: The possibility of forming an epitaxial tin-silicon solid solution in the concentration range significantly exceeding the known solubility limits of Sn in Si is shown. The rearrangement of the local density of the electronic states of tin and silicon indicates the formation of solid solutions with tin concentrations of 2, 8, and 15 at. %

Downloads

Download data is not yet available.

Author Biographies

Nikolai I. Boikov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

engineer-physicist, Joint Scientific and Educational Laboratory “Atomic and Electronic Structure of Functional Materials” of Voronezh State University and the National Research Center “Kurchatov Institute”, Voronezh
State University (Voronezh, Russian Federation)

Olga A. Chuvenkova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.), Senior Researcher, Joint Scientific and Educational Laboratory “Atomic and Electronic Structure of Functional Materials” of Voronezh State University and the National Research Center “Kurchatov Institute”, Voronezh State University (Voronezh, Russian Federation)

Elena V. Parinova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.), Assistant Professor, General Physics Department, Voronezh State University (Voronezh, Russian Federation)

Ratibor G. Chumakov, National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova pl., Moscow 123182, Russian Federation

Cand. Sci. (Phys.-Math.), Senior Researcher of the National Research Center “Kurchatov Institute” (Moscow, Russian Federation)

Alexei M. Lebedev, National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova pl., Moscow 123182, Russian Federation

Cand. Sci. (Phys.-Math.), Senior Researcher of the National Research Center “Kurchatov Institute” (Moscow, Russian Federation)

Dmitry Smirnov, Dresden University of Technology, Zellescher Weg 18, 01069 Dresden, Germany

Cand. Sci. (Phys.-Math.), Researcher, Institut für Festkörper- und Materialphysik, Technische
Universität Dresden (Dresden, Germany)

Anna Makarova, Free University of Berlin, Arnimallee 22, 14195 Berlin, Germany

Cand. Sci. (Phys.-Math.), Researcher, Institut für Chemie und Biochemie, Freie Universität Berlin (Berlin, Germany)

Sofiia S. Titova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Teacher of General Physics Department, Voronezh State University, (Voronezh, Russian Federation)

Kirill A. Fateev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Laboratory assistant in physics of General Physics Department, Voronezh State University, (Voronezh, Russian Federation)

Sergey Yu. Turishchev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.), Associate Professor, Head of the General Physics Department, Voronezh State University (Voronezh, Russian Federation)

References

Soref R. A., Perry C. H. Predicted band gap of the new semiconductor SiGeSn. Journal Applied Physics. 1991;69: 539—548. https://doi.org/10.1063/1.347704

Moontragoon P., Ikonic Z., Harrison P. Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials. Semiconductor Science and Technology. 2007;22: 742—748. https://doi.org/10.1088/0268— 1242/22/7/012

Massalski T. B., Okamoto H., Subramanian P. R., Kacprzak L. Binary Alloy Phase Diagrams. 2nd ed., 1990, vol.2, ASM International, Materials Park, Ohio, p. 3362.

Chuvenkova O. A., Domashevskaya E. P., Ryabtsev S. V., … Turishchev S. Yu. XANES and XPS investigations of surface defects in wire like SnO2 crystals. Physics of the Solid State. 2015;57(1): 153–161. https://doi.org/10.1134/s1063783415010072

Kucheyev S., Baumann T. F., Sterne P. A., … Willey T. M. Surface electronic states in three-dimensional SnO2 nanostructures. Physical Review B. 2005;72(3): 035404-1-5. https://doi.org/10.1103/PhysRevB.72.035404

Chuvenkova O. A., Boikov N. I., Ryabtsev S. V., … Turishchev S. Y. Electronic structure and composition of tin oxide thin epitaxial and magnetron layers according to synchrotron XANES studies. Condensed Matter and Interphases. 2024;26(1): 153–160. https://doi.org/10.17308/kcmf.2024.26/11897

Tonkikh A. A., Zakharov N. D., Eisenschmidt C., Leipner H. S., Werner P. Aperiodic SiSn/Si multilayers for thermoelectric applications. Journal of Crystal Growth. 2014; 392: 49–51. http://doi.org/10.1016/j.jcrysgro.2014.01.047

Stohr J. NEXAFS spectroscopy. Berlin: Springer: 1996. 403 p.

Turishchev S. Yu., Parinova E. V., Pisliaruk A. K., … Sivakov V. Surface deep profile synchrotron studies of mechanically modified top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Scientific Reports. 2019;9(8066): 1–7. https://doi.org/10.1038/s41598-019-44555-y

Ming T., Turishchev S., Schleusener A., … Sivakov V. Silicon suboxides as driving force for efficient light-enhanced hydrogen generation on silicon nanowires. Small. 2021;17(8): 2007650-1-6. https://doi.org/10.1002/smll.202007650

Manyakin M. D., Kurganskii S. I., Dubrovskii O. I., … Turishchev S. Yu. Electronic and atomic structure studies of tin oxide layers using X-ray absorption near edge structure spectroscopy data modelling. Materials Science in Semiconductor Processing. 2019;99: 28–33. https://doi.org/10.1016/j.mssp.2019.04.006

Fedoseenko S. I., Iossifov I. E., Gorovikov S. A., … Kaindl G. Development and present status of the Russian–German soft X-ray beamline at BESSY II. Nuclear Instruments and Methods in Physics Research Section A: accelerators, Spectrometers, Detectors and Associated Equipment. 2001;470: 84–88. https://doi.org/10.1016/S0168-9002(01)01032-4

Lebedev A. M., Menshikov K. A., Nazin V. G., Stankevich V. G., Tsetlin M. B., Chumakov R. G. NanoPES photoelectron beamline of the Kurchatov Synchrotron Radiation Source. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2021;15: 1039–1044. https://doi.org/10.1134/S1027451021050335

Kasrai M., Lennard W. N., Brunner R. W., Bancroft G. M., Bardwell J. A., Tan K. H. Sampling depth of total electron and fluorescence measurements in Si L- and K-edge absorption spectroscopy. Applied Surface Science. 1996;99: 303–312. https://doi.org/10.1016/0169-4332(96)00454-0

Erbil A., Cargill III G. S., Frahm R., Boehme R. F. Total-electron-yield current measurements for near-surface extended x-ray-absorption fine structure. Physical Review B. 1988; 37: 2450–2464. https://doi.org/10.1103/PhysRevB.37.2450

Barranco A., Yubero F., Espinos J. P., Groening P., Gonzalez-Elipe A. R. Electronic state characterization of SiOx thin films prepared by evaporation. Journal of Applied Physics. 2005;97: 113714. ttps://doi.org/10.1063/1.1927278

Published
2025-09-25
How to Cite
Boikov, N. I., Chuvenkova, O. A., Parinova, E. V., Chumakov, R. G., Lebedev, A. M., Smirnov, D., Makarova, A., Titova, S. S., Fateev, K. A., & Turishchev, S. Y. (2025). Synchrotron XANES studies of epitaxial tin-silicon solid solutions nanolayers. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(3), 490-496. https://doi.org/10.17308/kcmf.2025.27/13201
Section
Short communication

Most read articles by the same author(s)