Synchrotron XANES studies of epitaxial tin-silicon solid solutions nanolayers
Abstract
Purpose: Functional tin and silicon-based materials and thin-film structures based on them are promising objects for microelectronics devices. An important issue for the study and subsequent application of such materials and structures is the properties control under formation technological regimes variations.
Experimental: The specificity of the local atomic surrounding and the features of the electronic structure of tin-silicon solid solutions have been studied by X-ray absorption near edge structure spectroscopy using synchrotron radiation. Nanolayer structures of tin-silicon solid solutions on buffer silicon nanolayers were formed using molecular beam epitaxy.
Conclusions: The possibility of forming an epitaxial tin-silicon solid solution in the concentration range significantly exceeding the known solubility limits of Sn in Si is shown. The rearrangement of the local density of the electronic states of tin and silicon indicates the formation of solid solutions with tin concentrations of 2, 8, and 15 at. %
Downloads
References
Soref R. A., Perry C. H. Predicted band gap of the new semiconductor SiGeSn. Journal Applied Physics. 1991;69: 539—548. https://doi.org/10.1063/1.347704
Moontragoon P., Ikonic Z., Harrison P. Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials. Semiconductor Science and Technology. 2007;22: 742—748. https://doi.org/10.1088/0268— 1242/22/7/012
Massalski T. B., Okamoto H., Subramanian P. R., Kacprzak L. Binary Alloy Phase Diagrams. 2nd ed., 1990, vol.2, ASM International, Materials Park, Ohio, p. 3362.
Chuvenkova O. A., Domashevskaya E. P., Ryabtsev S. V., … Turishchev S. Yu. XANES and XPS investigations of surface defects in wire like SnO2 crystals. Physics of the Solid State. 2015;57(1): 153–161. https://doi.org/10.1134/s1063783415010072
Kucheyev S., Baumann T. F., Sterne P. A., … Willey T. M. Surface electronic states in three-dimensional SnO2 nanostructures. Physical Review B. 2005;72(3): 035404-1-5. https://doi.org/10.1103/PhysRevB.72.035404
Chuvenkova O. A., Boikov N. I., Ryabtsev S. V., … Turishchev S. Y. Electronic structure and composition of tin oxide thin epitaxial and magnetron layers according to synchrotron XANES studies. Condensed Matter and Interphases. 2024;26(1): 153–160. https://doi.org/10.17308/kcmf.2024.26/11897
Tonkikh A. A., Zakharov N. D., Eisenschmidt C., Leipner H. S., Werner P. Aperiodic SiSn/Si multilayers for thermoelectric applications. Journal of Crystal Growth. 2014; 392: 49–51. http://doi.org/10.1016/j.jcrysgro.2014.01.047
Stohr J. NEXAFS spectroscopy. Berlin: Springer: 1996. 403 p.
Turishchev S. Yu., Parinova E. V., Pisliaruk A. K., … Sivakov V. Surface deep profile synchrotron studies of mechanically modified top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Scientific Reports. 2019;9(8066): 1–7. https://doi.org/10.1038/s41598-019-44555-y
Ming T., Turishchev S., Schleusener A., … Sivakov V. Silicon suboxides as driving force for efficient light-enhanced hydrogen generation on silicon nanowires. Small. 2021;17(8): 2007650-1-6. https://doi.org/10.1002/smll.202007650
Manyakin M. D., Kurganskii S. I., Dubrovskii O. I., … Turishchev S. Yu. Electronic and atomic structure studies of tin oxide layers using X-ray absorption near edge structure spectroscopy data modelling. Materials Science in Semiconductor Processing. 2019;99: 28–33. https://doi.org/10.1016/j.mssp.2019.04.006
Fedoseenko S. I., Iossifov I. E., Gorovikov S. A., … Kaindl G. Development and present status of the Russian–German soft X-ray beamline at BESSY II. Nuclear Instruments and Methods in Physics Research Section A: accelerators, Spectrometers, Detectors and Associated Equipment. 2001;470: 84–88. https://doi.org/10.1016/S0168-9002(01)01032-4
Lebedev A. M., Menshikov K. A., Nazin V. G., Stankevich V. G., Tsetlin M. B., Chumakov R. G. NanoPES photoelectron beamline of the Kurchatov Synchrotron Radiation Source. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2021;15: 1039–1044. https://doi.org/10.1134/S1027451021050335
Kasrai M., Lennard W. N., Brunner R. W., Bancroft G. M., Bardwell J. A., Tan K. H. Sampling depth of total electron and fluorescence measurements in Si L- and K-edge absorption spectroscopy. Applied Surface Science. 1996;99: 303–312. https://doi.org/10.1016/0169-4332(96)00454-0
Erbil A., Cargill III G. S., Frahm R., Boehme R. F. Total-electron-yield current measurements for near-surface extended x-ray-absorption fine structure. Physical Review B. 1988; 37: 2450–2464. https://doi.org/10.1103/PhysRevB.37.2450
Barranco A., Yubero F., Espinos J. P., Groening P., Gonzalez-Elipe A. R. Electronic state characterization of SiOx thin films prepared by evaporation. Journal of Applied Physics. 2005;97: 113714. ttps://doi.org/10.1063/1.1927278
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








