Synthesis of chemically pure b-phase powders of gallium(III) oxide
Abstract
The purpose of our study was to develop an optimal procedure for the synthesis of the b-phase of gallium(III) oxide with a high degree of chemical purity. Based on the analysis of the possible synthesis methods of the b-phase of gallium(III) oxide, we suggested a procedure which uses gallium(III) nitrate crystallohydrate as a precursor for obtaining the final product. The article demonstrates that during the synthesis of gallium(III) nitrate by means of direct interaction between metallic gallium and concentrated nitric acid, a hygroscopic crystallohydrate is formed with the formula Ga(NO3)3· 9H2O.
Powders of the b-phase of Ga2O3 were synthesised by means of the thermal decomposition of gallium(III) nitrate in an oxygen atmosphere. Electron probe microanalysis (EPMA) and X-ray phase analysis (XRD) were used to determine the quantitative chemical composition, stoichiometry, and crystal structure of the gallium(III) oxide samples synthesised at different temperatures. The EPMA of the powders calcinated at temperatures Tcalc = 500–950 °C demonstrated that the ratio of the elements was constant and corresponded to the stoichiometric composition of Ga2O3. A comparative analysis of the X-ray diffraction peaks demonstrated that with an increase in the decomposition temperature within the range
Tcalc = 500–950 °C, the symmetry of the structure of the Ga2O3 powders decreased from the cubic to the monoclinic. The study also determined that the samples of gallium(III) oxide synthesised at Tcalc = 950 °C are single-phase and consist entirely of the monoclinic b-phase. The XRD data was used to calculate the crystal lattice parameters of the samples of the b-phase of Ga2O3 synthesised at Tcalc = 950 °C.
Downloads
References
Guo Y., Ma L., Mao K., Ju M., Bai Y., Zhao J., Zeng X. C. Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility. Nanoscale Horiz. 2019;4(3): 592–600. https://doi.org/10.1039/C8NH00273H
Pearton S. J., Jiancheng Yang, Cary Patrick H., Ren F., Jihyun Kim, Tadjer Marko J., Mastro Michael A. A review of Ga2O3 materials, processing, and devices. Applied Physics Reviews. 2018(5): 011301(1)–011301(56). https://doi.org/10.1063/1.5006941
Stepanov S. I., Nikolaev V. I., Bougrov V. E., Romanov A. E. Gallium oxide: properties and applications – a review. Reviews on Advanced Materials Science. 2016(44): 63–86. Режим доступа: https://elibrary.ru/item.asp?id=26987785
Shin S. S., Lee S. J., Seok S. I. Exploring wide bandgap metal oxides for perovskite solar cells. APL Materials. 2019; 7(2): 022401. https://doi.org/10.1063/1.5055607
Shi J., Zhang J., Yang L., Qu M., Qi D.-C., Zhang K. H. L. Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices. Advanced Materials. 2021;33(50): 2006230. https://doi.org/10.1002/adma.202006230
Mirzaei A., Lee J.-H., Majhi S., Weber M., Bechelany M., Kim S. Resistive gas sensors based on metal-oxide nanowires. Journal of Applied Physics. 2019;126: 241102. https://doi.org/10.1063/1.5118805
Neri G. First fifty years of chemoresistive gas sensors. Chemosensors. 2015;3(1): 1–20. https://doi.org/10.3390/chemosensors3010001
Vajhadin F., Mazloum-Ardakani M., Amini A. Metal oxide-based gas sensors for the detection of exhaled breath markers. Medical Devices & Sensors. 2021;4(1): e10161. https://doi.org/10.1002/mds3.10161
Shalini Devi K., Anantharamakrishnan A., Krishnan U., Yakhmi J. Chemical sensors based on metal oxides. In: Smart Sensors for Environmental and Medical Applications. Hamida Hallil, Hadi Heidari (eds.). The Institute of Electrical and Electronics Engineers, Inc.; 2020. pp 103–127. https://doi.org/10.1002/9781119587422.ch6
Pearton S., Yang J., Cary P. H., Ren F., Kim J., Tadjer M., Mastro M. A Review of Ga2O3 materials, processing, and devices. Applied Physics Reviews. 2018;5: 011301. https://doi.org/10.1063/1.5006941
Singh R., Lenka T. R., Panda D. K., Velpula R. T., Jain B., Bui H. Q. T., Nguyen H. P. T. The dawn of Ga2O3 HEMTs for high power electronics – a review. Materials Science in Semiconductor Processing. 2020;119: 105216. https://doi.org/10.1016/j.mssp.2020.105216
Alhalaili B., Al-Duweesh A., Popescu I. N., Vidu R., Vladareanu L., Islam M. S. Improvement of Schottky contacts of gallium oxide (Ga2O3) nanowires for UV applications. Sensors. 2022;22 (5): 2048. https://doi.org/10.3390/s22052048
Playford H. Y., Hannon A. C., Barney E. R., Walton R. I. Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction. Chemistry – A European Journal. 2013;19(8), 2803–2813. https://doi.org/10.1002/chem.201203359
Yoshioka S., Hayashi H., Kuwabara A., Oba F., Matsunaga K., Tanaka I. Structures and energetics of Ga2O3 polymorphs. Journal of Physics: Condensed Mat ter. 2007; 19(34): 346211. https://doi.org/10.1088/0953-984/19/34/346211
McCandless J. P., Chang C. S., Nomoto K. … Jena D. Thermal stability of epitaxial a-Ga2O3 and (Al,Ga)2O3 layers on m-plane sapphire: Applied Physics Letters. 2021; 119(6): 062102. https://doi.org/10.1063/5.0064278
Xue H., He Q., Jian G., Long S., Pang T., Liu M. An overview of the ultrawide bandgap Ga2O3 semiconductor-based Schottky barrier diode for power electronics application. Nanoscale Research Letters. 2018;13(1): 290. https://doi.org/10.1186/s11671-018-2712-1
Ryabtsev S. V., Ievlev V. M., Samoylov A. M., Kuschev S. B., Soldatenko S. A. Microstructure and electrical properties of palladium oxide thin films for oxidizing gases detection. Thin Solid Films. 2017;636: 751–759. https://doi.org/10.1016/j.tsf.2017.04.009
Ryabtsev S. V., Shaposhnik A. V., Samoilov A. M., Sinelnikov A. A., Soldatenko S. A., Kushchev S. B., Ievlev V. M. Thin films of palladium oxide for gas sensors. Doklady Physical Chemistry. 2016;470(5): 550–553. (In Russ.). https://doi.org/10.7868/S0869565216290168
Samoylov A., Ryabtsev S., Shaposhnik A., Kuschev S., Soldatenko S., Ievlev V. Palladium oxide thin film for oxidizing gases detecting. The 16-th International Meeting on Chemical Sensors IMCS 2016. Jeju, Jeju Island, Korea, July 10–13, 2016: Final Program
& Absrtacts Book. 2016. 96 p. 20. Ryabtsev S. V., Iyevlev V. M., Samoylov A. M., Kuschev S. B., Soldatenko S. A. Real microstructure and electrical properties of palladium oxide thin films for oxidizing gases detecting. Science and Application of Thin Films, Conference & Exhibition (SATF-2016) Çeşme, Izmir, Turkey, September 19–23, 2016. Book of Abstracts: Izmir Institute of Technology. 2016. 44 p.
Ievlev V. M., Ryabtsev S. V., Shaposhnik A. V., Samoylov A. M., Kuschev S. B., Sinelnikov A. A. Ultrathin films of palladium oxide for oxidizing gases detecting. Procedia Engineering. 2016;168: 1106-1109. https://doi.org/10.1016/j.proeng.2016.11.357
Ievlev V. M., Ryabtsev S. V., Samoylov A. M., Shaposhnik A. V., Kuschev S. B., Sinelnikov A. A. Thin and ultrathin films of palladium oxide for oxidizing gases detection. Sensors and Actuators B: Chemical. 2018;255(2): 1335–1342. https://doi.org/10.1016/j.snb.2017.08.121
Samoylov A. M., Ryabtsev S. V., Popov V. N., Badica P. Palladium (II) oxide nanostructures as promising materials for gas sensors. In book: Novel nanomaterials synthesis and applications. George Kyzas (ed.). UK, London: IntechOpen Publishing House, 2018. pp. 211–229. http://dx.doi.org/10.5772/intechopen.72323
Marikutsa A. V., Rumyantseva M. N., Gaskov A. M., Samoylov A. M. Nanocrystalline tin dioxide: basics in relation with gas sensing phenomena. Part I. Physical and chemical properties and sensor signal formation. Inorganic Materials. 2015;51(13): 1329–1347. https://doi.org/10.1134/s002016851513004x
Marikutsa A. V., Rumyantseva M. N., Gaskov A. M., Samoylov A. M Nanocrystalline tin dioxide: basics in relation with gas sensing phenomena. Part II. Active centers and sensor behavior. Inorganic Materials. 2016;52(13): 1311–1338. https://doi.org/10.1134/S0020168516130045
Greenwood N. N., Earnshaw A. Chemistry of elements. 1997. https://doi.org/10.1016/b978-0-7506-3365-9.50005-5 (In Russ.)
Nekrasov B. V. Fundamentals of general chemistry: in 2 volumes. St. Petersburg: Jan’; 2003. 656 p. (In Russ.)
Ugay Ya. A. Inorganic chemistry: a textbook for chemical specialties of universities. Moscow: Vysshaya shkola Publ.; 1989. 483 p. (In Russ.)
Lurie Yu. Yu. Handbook of analytical chemistry. Moscow: 1979. pp. 92-101. (In Russ.)
Karyakin Yu. V., Angelov I. I. Pure chemicals. Moscow: Khimiya Publ.; 1974. 408 p. (In Russ.)
Yoshioka S., Hayashi H., Kuwabara A., Oba F., Matsunaga K., Tanaka I. Structures and energetics of Ga2O3 polymorphs. Journal of Physics: Condensed Matter. 2007; 19(34): 346211. https://doi.org/10.1088/0953-8984/19/34/346211
Geller S. Crystal structure of b-Ga2O3. The Journal of Chemical Physics. 1960;33(3): 676–684. https://doi.org/10.1063/1.1731237
Welton-Holzer J., McCarthy G. North Dakota State University, Fargo, North Dakota, USA. ICDD Grant-in-Aid (1989).
Åhman J., Svensson G., Albertsson J. A rein ve stigationof b- galliu moxide. Acta Crystallographica Section C Crystal Structure Communications. 1996;52 (6): 1336–1338. https://doi.org/10.1107/S0108270195016404
Holland T. J. B., Redfern S. A. T. Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine. 1997;61(404): 65–77. https://doi.org/10.1180/minmag.1997.061.404.07
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.