Влияние влажности бензойной кислоты на процесс протонного обмена в кристаллах ниобата лития
Аннотация
Цель данной работы – изучение влияния примесей воды в бензойной кислоте, используемой в качестве источника протонов при проведении протонного обмена на кристаллах ниобата лития, на процесс формирования протонообменных волноводов, их структуру и фазовый состав.
Для проведения исследований использовались методы призменного ввода, рентгеноструктурного анализа, спектроскопии ИК-поглощения, оптической микроскопии в поляризованном свете. Установлено, что увеличение содержания влаги в бензойной кислоте оказывает влияние на оптические характеристики волноводов, несколько увеличивает напряжения (деформации) протонообменных слоев. Последующий отжиг в значительной мере выравнивает характеристики волноводов.
При проведении протонного обмена следует учитывать содержание влаги в бензойной кислоте для получения воспроизводимых и стабильных характеристик интегрально-оптических устройств с протонообменными волноводами
Скачивания
Литература
Korkishko Yu. N., Fedorov V. A., Kostritskii S. M., … Laurell F. Proton exchanged LiNbO3 and LiTaO3 optical waveguides and integrated optic devices. Microelectronic Engineering. 2003;69: 228–236. https://doi.org/10.1016/S0167-9317(03)00302-2
Kuneva M. Optical waveguides obtained via proton exchange technology in LiNbO3 and LiTaO3 – a short review. International Journal of Scientific Research in Science and Technology. 2016;2(6): 40–50.
Korkishko Yu.N., Fedorov V.A. Structural phase diagram of proton-exchange HxLi1-xNbO3 waveguides in lithium niobate crystals. Crystallography Reports. 1999;44(2): 237–246. Available at: https://elibrary.ru/item.asp?id=13324513
de Almeida J. M. M. M. Design methodology of annealed H+ waveguides in ferroelectric LiNbO3. Optical Engineering. 2007;46(6): 064601. https://doi.org/10.1117/1.2744364
Cai L., Wang Y., Hu H. Low-loss waveguides in a single-crystal lithium niobate thin film. Optics Letters. 2015;40(13): 3013–3016. https://doi.org/10.1364/OL.40.003013
Suchoski P. G., Findakly T. K., Leonberger F. J. Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation. Optics Letters. 1988;13(11): 1050–1052. https://doi.org/10.1364/OL.13.001050
Korkishko Y. N., Fedorov V. A., Feoktistova O. Y. LiNbO3 optical waveguide fabrication by hightemperature proton exchange. Journal of Lightwave Technology. 2000;18(4): 562–568. https://doi.org/10.1109/50.838131
Korkishko Yu. N., Fedorov V. A. Structural phase diagram of HxLi1–xNbO3 waveguides: the correlation between optical and structural properties. IEEE Journal of Selected Topics in Quantum Electronics. 1996;2(2): 187–196. https://doi.org/10.1109/2944.577359
Bazzan M., Sada C. Optial waveguides in lithium niobate: Recent developments and applications. Applied Physics Reviews. 2015;2(4): 040603. https://doi.org/10.1063/1.4931601
Dörrer L., Tuchel P., Hüger E., Heller R., Schmidt H. Hydrogen diffusion in proton-exchanged lithium niobate single crystals. Journal of Applied Physics. 2021; 129: 135105. https://doi.org/10.1063/5.0047606
Dörrer L., Tuchel P., Uxa D., Schmidt H. Lithium tracer diffusion in proton-exchanged lithium niobate. Solid State Ionics. 2021;365: 115657. https://doi.org/10.1016/j.ssi.2021.115657
Demin V. A., Petukhov M. I., Ponomarev R. S., Kuneva M. Dynamics of the proton exchange process in benzoic acid interacting with lithium niobate crystals. Langmuir. 2023;39(31): 10855-10862. https://doi.org/10.1021/acs.langmuir.3c00957
Kostritskii S. M., Korkishko Y. N., Fedorov V. A.,… Aillerie M. Phase composition of channel protonexchanged waveguides in different near-congruent LiNbO3. Ferroelectrics Letters Section. 2020;47(1–3): 9–15. https://doi.org/10.1080/07315171.2020.1799627
Volk T., Wöhlecke M. Lithium niobate: defects, photorefraction and ferroelectric switching. Berlin: Springer, 2008. 249 p. https://doi.org/10.1007/978-3-540-70766-0
Petukhov I. V., Kichigin V. I., Mushinskii S. S., Minkin A. M., Shevtsov D. I. Effect of water contained in benzoic acid on the proton exchange process, the structure and the properties of proton-exchange waveguides in lithium niobate single crystals. Condensed Matter and Interphases. 2012;14(1): 119–123. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=17711946
Mushinsky S. S., Minkin A. M., Kichigin V. I., … Shur V. Ya. Water effect on proton exchange of X-cut lithium niobate in the melt of benzoic acid. Ferroelectrics. 2015;476(1): 84–93. https://doi.org/10.1080/00150193.2015.998530
Rambu A. P., Apetrei A. M., Doutre F., Tronche H., De Micheli M. P., Tascu S. Analysis of high-index contrast lithium niobate waveguides fabricated by high vacuum proton exchange. Journal of Lightwave Technology. 2018;36(13): 2675–2684. https://doi.org/10.1109/JLT.2018.2822317
Rambu A. P., Apetrei A. M., Tascu S. Role of the high vacuum in the precise control of index contrasts and index profiles of LiNbO3 waveguides fabricated by high vacuum proton exchange. Optics and Laser Technology. 2019;118: 109–114. https://doi.org/10.1109/JLT.2018.2822317
Kichigin V. I., Petukhov I. V., Mushinskii S. S., Karmanov V. I., Shevtsov D. I. Electrical conductivity and IR spectra of molten benzoic acid. Russian Journal of Applied Chemistry. 2011;84(12): 2060–2064. https://doi.org/10.1134/S1070427211120081
Kichigin V. I., Petukhov I. V., Kornilitsyn A. R., Mushinsky S. S. Influence of humidity of benzoic acid on the electrical conductivity of its melts. Condensed Matter and Interphases. 2022;24(3): 315–320.. https://doi.org/10.17308/kcmf.2022.24/9853
Kolosovskii E. A., Petrov D. V., Tsarev A. V. Numerical method for the reconstruction of the refractive index profile of diffused waveguides. Soviet Journal of Quantum Electronics. 1981;11(12): 1560–1566. https://doi.org/10.1070/QE1981v-011n12ABEH008650
Kuneva M. Surface phase detection of protonexchanged layers in LiNbO3 and LiTaO3 by IR reflection spectroscopy. Bulgarian Chemical Communications. 2013;45(4): 474–478.
Azanova I. S., Shevtsov D. I., Zhundrikov A. V., Kichigin V. I., Petukhov I. V., Volyntsev A. B. Chemical etching technique for investigations of a structure of annealed and un-annealed proton exchange channel LiNbO3 waveguides. Ferroelectrics. 2008;374(1): 110–121. https://doi.org/10.1080/00150190802427234
Mushinsky S. S., Petukhov I. V., Kichigin V. I., Sidorov D. I., Semenova O. R., Ponomarev R. S. Influence of the pretreatment of lithium niobate surface with plasma and ultraviolet radiation on the proton exchange in benzoica acid melts. IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials (EDM). 2021;283–286. https://doi.org/10.1109/EDM52169.2021.9507647
Mushinsky S. S., Kichigin V. I., Petukhov I. V., Permyakova M. A., Shevtsov D. I. Structural phase transformations of proton-exchanged layers of lithium niobate during annealing. Ferroelectrics. 2017;508(1): 40–48. https://doi.org/10.1080/00150193.2017.1286702
Korkishko Yu. N., Fedorov V. A. Composition of different crystal phases in proton exchanged waveguides in LiNbO3. In: Wong K. K. (Ed.), Properties of Lithium Niobate. Chapter 3.2. London: INSPEC, The Institution of Electrical Engineers; 2002. p. 50–54.
Ito K., Kawamoto K. The dependence of the diffusion coefficient on the proton concentration in the proton exchange of LiNbO3. Japanese Journal of Applied Physics. 1997;36(11): 6775–6780. https://doi.org/10.1143/JJAP.36.6775
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.