Spectromicroscopic Studies of Porous Silicon Oxide on Silicon Using Synchrotron Radiation
Abstract
This work is dedicated to microscopic synchrotron studies of the morphology, atomic, and electronic structure of an array of submicron-sized pores in a SiO2 layer on silicon formed with the use of ion-track technology in combination with chemical etching after irradiation. The research method was photoemission electron microscopy using high-intensity synchrotron radiation. The method was used in two modes. The use of chemically selective electron microscopy allowed obtaining morphological information about the studied array of pores. The X-ray spectroscopy mode of the synchrotron radiation of
X-rays absorption near-edge fi ne structure spectroscopy allowed us to obtain information about the specifi city of the local surrounding of the given atoms from microscopic regions of nanometer and submicron areas of the obtained microscopic images. The pores had rather sharp boundaries, without a transition layer. The bottom of the pores was a substrate - a crystalline silicon wafer covered with a natural 2-3 nm thick oxide layer. Ion irradiation and chemical etching did not signifi cantly affect the structural and phase characteristics of the porous silicon oxide matrix. There was no signifi cant disordering in the silicon atoms available at the bottom of individual pores. There was no technological contamination.
The effi ciency of using ion-track technology in combination with chemical etching after irradiation for the formation of isolated pores arrays with close submicron range sizes was shown. The obtained results demonstrated the effi ciency of the photoemission electron microscopy method using high-intensity synchrotron radiation for the high accuracy microscopic scale study of a wide range of objects with the composite structure-phase nature of the surface.
REFERENCES
- Sinha D., Petrov A., Fink D., Fahrner W. R., Hoppe K., and Chandra A. Tempos structures with gold nanoclusters. Radiation Effects and Defects in Solids. 2004;159(8-9): 517–533. DOI: https://doi.org/10.1080/10420150412331304187
- Kaniukov E. Yu., Ustarroz J., Yakimchuk D. V., Petrova M., Terryn H., Sivakov V., Petrov A. V. Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology. 2016;27(11): 115305. DOI: https://doi.org/10.1088/0957-4484/27/11/115305
- Ivanou D. K., Streltsov Е. A., Fedotov A. K., Mazanik A. V., Fink D., Petrov A. Electrochemical deposition of PbSe and CdTe nanoparticles onto p-Si(100) wafers and into nanopores in SiO2/Si(100)structure. Thin Solid Films. 2005;490(2): 154–160. DOI: https://doi.org/10.1016/j.tsf.2005.04.046
- Ivanova Yu. A., Ivanou D. K., Fedotov A. K., Streltsov Е. A., Demyanov S. E., Petrov A. V., Kaniukov E. Yu., Fink D. Electrochemical deposition of Ni and Cu onto monocrystalline n-Si(100) wafers and into nanopores in Si/SiO2 template J. Materials Science. 2007;42(22): 9163-9169. DOI: https://doi.org/10.1007/s10853-007-1926-x
- Fink D., Alegaonkar P. S., Petrov A. V., Wilhelm M., Szimkowiak P., Behar M., Sinha D., Fahrner W. R., Hoppe K., Chadderton L. T. Electrochemical deposition of Ni and Cu onto monocrystalline n-Si(100) wafers and into nanopores in Si/SiO2 template. Nucl. Instr. Meth B. 2005;236(1–4): 11–20. DOI: https://doi.org/10.1016/j.nimb.2005.03.243
- Mosier-Boss P. Review of SERS substrates for chemical sensing. Nanomaterials. 2017;7(6): 142. DOI: https://doi.org/10.3390/nano7060142
- Jahn M., Patze S., Hidi I. J., Knipper R., Radu A. I., Muhlig A., Yuksel S., Peksa V., Weber K., Mayerhofer T., Cialla-May D., Popp J. Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst. 2016;141(3): 756–793. DOI: https://doi.org/10.1039/c5an02057c
- Turishchev S. Yu., Parinova E. V., Pisliaruk A. K., Koyuda D. A., Yermukhamed D., Ming T., Ovsyannikov R., Smirnov D., Makarova A., Sivakov V. Surface deep profi le synchrotron studies of mechanically modifi ed top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Scientifi c Reports. 2019;9(1): 8066. DOI: https://doi.org/10.1038/s41598-019-44555-y
- Liu L., Sham T. K. The effect of thermal oxidation on the luminescence properties of nanostructured silicon. Small. 2012;8(15): 2371–2380. DOI: https://doi.org/10.1002/smll.201200175
- Barranco A., Yubero F., Espinos J.P., Groening P., Gonzalez-Elipe A. R. Electronic state characterization of SiOx thin fi lms prepared by evaporation. J. Appl. Phys. 2005;97(11): 113714. DOI: https://doi.org/10.1063/1.1927278
- Parinova E. V., Fedotov A. K., Koyuda D. A., Fedotova J. A., Streltsov Е. А., Malashchenok N. V., Ovsyannikov R., Turishchev S. Yu. The composite structures based on nickel rods in the matrix of silicon dioxide formation peculiarities study using synchrotron XANES in the electrons and photons yield registration modes. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(1): 116–125. Available at: https://journals.vsu.ru/kcmf/article/view/726 (In Russ., abstract in Eng.)
- Kleineberg U., Haindl G., Hutten A., Reiss G., Gullikson E.M., Jones M.S., Mrowka S., Rekawa S. B., Underwood J. H. Microcharacterization of the surface oxidation of Py/Cu multilayers by scanning X-ray absorption spectromicroscopy. Appl. Phys. A. 2001;73(4): 515–519. DOI: https://doi.org/10.1007/s003390100801
- Schmahl G., Rudolph D. (eds) X-Ray Microscopy. Springer Series in Optical Sciences, vol 43. Berlin, Heidelberg: Springer: 1984. DOI: https://doi.org/10.1007/978-3-540-38833-3_1
- Polishchuk I., Bracha A. A., Bloch L., Levy D., Kozachkevich S., Etinger-Geller Y., Kauffmann Y., Burghammer M., Giacobbe C., Villanova J., Hendler G., Chang-Yu Sun, Giuffre A. J., Marcus M. A., Kundanati L., Zaslansky P., Pugno N. M., Gilbert G. P., Katsman A., Pokroy B. Coherently aligned nanoparticles within a biogenic single crystal: a biological prestressing strategy. Science. 2017;358(6368): 1294–1298. DOI: https://doi.org/10.1126/science.aaj2156
- Kalegowda Y., Chan Y-L., Wei D-H., Harmer S. L. X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite fl otation: Effect of pulp potential. Surface Science. 2015;635: 70–77. DOI: https://doi.org/10.1016/j.susc.2014.12.012
- Turishchev S. Yu., Parinova E. V., Kronast F., Ovsyannikov R., Malashchenok N. V., Streltsov E. A., Ivanov D. K. and Fedotov A. K. Photoemission electron microscopy of arrays of submicron nickel rods in a silicon dioxide matrix. Physics of the Solid State. 2014;56(9): 1916–921. DOI: https://doi.org/10.1134/S1063783414090297
- Turishchev S. Yu., Parinova E. V., Fedotova J. A., Mazanik A. V., Fedotov A. K., Apel P. Yu. Submicron Ni rods massives distributed in silicon dioxide matrix microscopic characterization. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2013;15(1): 54–58. Available at: https://journals.vsu.ru/kcmf/article/view/878 (In Russ., abstract in Eng.)
- Kasrai M., Lennard W. N., Brunner R. W., Bancroft G. M., Bardwell J. A., Tan K. H. Sampling depth of total electron and fl uorescence measurements in Si L- and K-edge absorption spectroscopy. Appl. Surf. Science. 1996;99(4): 303–312. DOI: https://doi.org/10.1016/0169-4332(96)00454-0
- Zimkina T. M., Fomichev V. A. Ul’tramyagkaya rentgenovskaya spektroskopiya [Ultrasoft X-Ray Spectroscopy]. Leningrad: LGU Publ.; 1971. 132 p. (In Russ.)
- Stohr J. NEXAFS Spectroscopy. Berlin: Springer; 1996, 403 p.
- Brown F. C., Rustgi O. P., Extreme ultraviolet transmission of crystalline and amorphous silicon. Phys. Rev. Let. 1972;28(8): 497–500. DOI: https://doi.org/10.1103/PhysRevLett.28.497
- Turishchev S. Yu., Terekhov V. A., Parinova E. V., Korolik O. V., Mazanik A. V., Fedotov A. K. Surface modification and oxidation of Si wafers after low energy plasma treatment in hydrogen, helium and argon. Materials Science in Semiconductor Processing. 2013;16(6): 1377–1381. DOI: https://doi.org/10.1016/j.mssp.2013.04.020
- Domashevskaya E. P., Terekhov V. A., Turishchev S. Yu., Khoviv D. A., Parinova E. V., Skryshevskii V. A., Gavril’chenko I. V. Peculiarities of electronenergy structure of surface layers of porous silicon formed on p-type substrates. Inorganic Materials. 2012;48(14): 1291–1297. DOI: https://doi.org/10.1134/S0020168512140063
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.