Spectromicroscopic Studies of Porous Silicon Oxide on Silicon Using Synchrotron Radiation

  • Elena V. Parinova Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0003-2817-3547
  • Dmitry Marchenko Helmholtz Zentrum Berlin, 15 Albert Einstein str., Berlin 12489, Germany
  • Aleksander K. Fedotov Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya str., Minsk 220030, Belarus
  • Dmitry A. Koyuda Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation
  • Julia A. Fedotova Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya str., Minsk 220030, Belarus https://orcid.org/0000-0002-4471-0552
  • Ruslan Ovsyannikov Helmholtz Zentrum Berlin, 15 Albert Einstein str., Berlin 12489, Germany https://orcid.org/0000-0001-6311-5516
  • Sergey Yu. Turishchev Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0003-3320-1979
Keywords: silicon dioxide,, submicron pores,, atomic and electronic structure,, synchrotron radiation,, XANES,, Photoemission Electron Microscopy,, local atomic surrounding

Abstract

This work is dedicated to microscopic synchrotron studies of the morphology, atomic, and electronic structure of an array of submicron-sized pores in a SiO2 layer on silicon formed with the use of ion-track technology in combination with chemical etching after irradiation. The research method was photoemission electron microscopy using high-intensity synchrotron radiation. The method was used in two modes. The use of chemically selective electron microscopy allowed obtaining morphological information about the studied array of pores. The X-ray spectroscopy mode of the synchrotron radiation of
X-rays absorption near-edge fi ne structure spectroscopy allowed us to obtain information about the specifi city of the local surrounding of the given atoms from microscopic regions of nanometer and submicron areas of the obtained microscopic images. The pores had rather sharp boundaries, without a transition layer. The bottom of the pores was a substrate - a crystalline silicon wafer covered with a natural 2-3 nm thick oxide layer. Ion irradiation and chemical etching did not signifi cantly affect the structural and phase characteristics of the porous silicon oxide matrix. There was no signifi cant disordering in the silicon atoms available at the bottom of individual pores. There was no technological contamination.
The effi ciency of using ion-track technology in combination with chemical etching after irradiation for the formation of isolated pores arrays with close submicron range sizes was shown. The obtained results demonstrated the effi ciency of the photoemission electron microscopy method using high-intensity synchrotron radiation for the high accuracy microscopic scale study of a wide range of objects with the composite structure-phase nature of the surface.

 

 

 

 

REFERENCES

  1. Sinha D., Petrov A., Fink D., Fahrner W. R., Hoppe K., and Chandra A. Tempos structures with gold nanoclusters. Radiation Effects and Defects in Solids. 2004;159(8-9): 517–533. DOI: https://doi.org/10.1080/10420150412331304187
  2. Kaniukov E. Yu., Ustarroz J., Yakimchuk D. V., Petrova M., Terryn H., Sivakov V., Petrov A. V. Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology. 2016;27(11): 115305. DOI: https://doi.org/10.1088/0957-4484/27/11/115305
  3. Ivanou D. K., Streltsov Е. A., Fedotov A. K., Mazanik A. V., Fink D., Petrov A. Electrochemical deposition of PbSe and CdTe nanoparticles onto p-Si(100) wafers and into nanopores in SiO2/Si(100)structure. Thin Solid Films. 2005;490(2): 154–160. DOI: https://doi.org/10.1016/j.tsf.2005.04.046
  4. Ivanova Yu. A., Ivanou D. K., Fedotov A. K., Streltsov Е. A., Demyanov S. E., Petrov A. V., Kaniukov E. Yu., Fink D. Electrochemical deposition of Ni and Cu onto monocrystalline n-Si(100) wafers and into nanopores in Si/SiO2 template J. Materials Science. 2007;42(22): 9163-9169. DOI: https://doi.org/10.1007/s10853-007-1926-x
  5. Fink D., Alegaonkar P. S., Petrov A. V., Wilhelm M., Szimkowiak P., Behar M., Sinha D., Fahrner W. R., Hoppe K., Chadderton L. T. Electrochemical deposition of Ni and Cu onto monocrystalline n-Si(100) wafers and into nanopores in Si/SiO2 template. Nucl. Instr. Meth B. 2005;236(1–4): 11–20. DOI: https://doi.org/10.1016/j.nimb.2005.03.243
  6. Mosier-Boss P. Review of SERS substrates for chemical sensing. Nanomaterials. 2017;7(6): 142. DOI: https://doi.org/10.3390/nano7060142
  7. Jahn M., Patze S., Hidi I. J., Knipper R., Radu A. I., Muhlig A., Yuksel S., Peksa V., Weber K., Mayerhofer T., Cialla-May D., Popp J. Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst. 2016;141(3): 756–793. DOI: https://doi.org/10.1039/c5an02057c
  8. Turishchev S. Yu., Parinova E. V., Pisliaruk A. K., Koyuda D. A., Yermukhamed D., Ming T., Ovsyannikov R., Smirnov D., Makarova A., Sivakov V. Surface deep profi le synchrotron studies of mechanically modifi ed top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Scientifi c Reports. 2019;9(1): 8066. DOI: https://doi.org/10.1038/s41598-019-44555-y
  9. Liu L., Sham T. K. The effect of thermal oxidation on the luminescence properties of nanostructured silicon. Small. 2012;8(15): 2371–2380. DOI: https://doi.org/10.1002/smll.201200175
  10. Barranco A., Yubero F., Espinos J.P., Groening P., Gonzalez-Elipe A. R. Electronic state characterization of SiOx thin fi lms prepared by evaporation. J. Appl. Phys. 2005;97(11): 113714. DOI: https://doi.org/10.1063/1.1927278
  11. Parinova E. V., Fedotov A. K., Koyuda D. A., Fedotova J. A., Streltsov Е. А., Malashchenok N. V., Ovsyannikov R., Turishchev S. Yu. The composite structures based on nickel rods in the matrix of silicon dioxide formation peculiarities study using synchrotron XANES in the electrons and photons yield registration modes. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(1): 116–125. Available at: https://journals.vsu.ru/kcmf/article/view/726 (In Russ., abstract in Eng.)
  12. Kleineberg U., Haindl G., Hutten A., Reiss G., Gullikson E.M., Jones M.S., Mrowka S., Rekawa S. B., Underwood J. H. Microcharacterization of the surface oxidation of Py/Cu multilayers by scanning X-ray absorption spectromicroscopy. Appl. Phys. A. 2001;73(4): 515–519. DOI: https://doi.org/10.1007/s003390100801
  13. Schmahl G., Rudolph D. (eds) X-Ray Microscopy. Springer Series in Optical Sciences, vol 43. Berlin, Heidelberg: Springer: 1984. DOI: https://doi.org/10.1007/978-3-540-38833-3_1
  14. Polishchuk I., Bracha A. A., Bloch L., Levy D., Kozachkevich S., Etinger-Geller Y., Kauffmann Y., Burghammer M., Giacobbe C., Villanova J., Hendler G., Chang-Yu Sun, Giuffre A. J., Marcus M. A., Kundanati L., Zaslansky P., Pugno N. M., Gilbert G. P., Katsman A., Pokroy B. Coherently aligned nanoparticles within a biogenic single crystal: a biological prestressing strategy. Science. 2017;358(6368): 1294–1298. DOI: https://doi.org/10.1126/science.aaj2156
  15. Kalegowda Y., Chan Y-L., Wei D-H., Harmer S. L. X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite fl otation: Effect of pulp potential. Surface Science. 2015;635: 70–77. DOI: https://doi.org/10.1016/j.susc.2014.12.012
  16. Turishchev S. Yu., Parinova E. V., Kronast F., Ovsyannikov R., Malashchenok N. V., Streltsov E. A., Ivanov D. K. and Fedotov A. K. Photoemission electron microscopy of arrays of submicron nickel rods in a silicon dioxide matrix. Physics of the Solid State. 2014;56(9): 1916–921. DOI: https://doi.org/10.1134/S1063783414090297
  17. Turishchev S. Yu., Parinova E. V., Fedotova J. A., Mazanik A. V., Fedotov A. K., Apel P. Yu. Submicron Ni rods massives distributed in silicon dioxide matrix microscopic characterization. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2013;15(1): 54–58. Available at: https://journals.vsu.ru/kcmf/article/view/878 (In Russ., abstract in Eng.)
  18. Kasrai M., Lennard W. N., Brunner R. W., Bancroft G. M., Bardwell J. A., Tan K. H. Sampling depth of total electron and fl uorescence measurements in Si L- and K-edge absorption spectroscopy. Appl. Surf. Science. 1996;99(4): 303–312. DOI: https://doi.org/10.1016/0169-4332(96)00454-0
  19. Zimkina T. M., Fomichev V. A. Ul’tramyagkaya rentgenovskaya spektroskopiya [Ultrasoft X-Ray Spectroscopy]. Leningrad: LGU Publ.; 1971. 132 p. (In Russ.)
  20. Stohr J. NEXAFS Spectroscopy. Berlin: Springer; 1996, 403 p.
  21. Brown F. C., Rustgi O. P., Extreme ultraviolet transmission of crystalline and amorphous silicon. Phys. Rev. Let. 1972;28(8): 497–500. DOI: https://doi.org/10.1103/PhysRevLett.28.497
  22. Turishchev S. Yu., Terekhov V. A., Parinova E. V., Korolik O. V., Mazanik A. V., Fedotov A. K. Surface modification and oxidation of Si wafers after low energy plasma treatment in hydrogen, helium and argon. Materials Science in Semiconductor Processing. 2013;16(6): 1377–1381. DOI: https://doi.org/10.1016/j.mssp.2013.04.020
  23. Domashevskaya E. P., Terekhov V. A., Turishchev S. Yu., Khoviv D. A., Parinova E. V., Skryshevskii V. A., Gavril’chenko I. V. Peculiarities of electronenergy structure of surface layers of porous silicon formed on p-type substrates. Inorganic Materials. 2012;48(14): 1291–1297. DOI: https://doi.org/10.1134/S0020168512140063

Downloads

Download data is not yet available.

Author Biographies

Elena V. Parinova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD in Physics and Mathematics, Researcher of the Joint Laboratory “Electronic Structure of Solids”, Voronezh State University, Voronezh, Russian Federation; e-mail: parinova@phys.vsu.ru.

Dmitry Marchenko, Helmholtz Zentrum Berlin, 15 Albert Einstein str., Berlin 12489, Germany

PhD in Physics and Mathematics, Researcher of the Helmholtz Zentrum Berlin, Berlin,
Germany; e-mail: marchenko.dmitry@gmail.com.

Aleksander K. Fedotov, Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya str., Minsk 220030, Belarus

DSc in Physics and Mathematics, Professor, Belarusian State University,
Minsk, Belarus; e-mail: fedotov@bsu.by.

Dmitry A. Koyuda, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Researcher Associate of the Joint Laboratory “Electronic Structure of Solids”, Voronezh
State University, Voronezh, Russian Federation; email: koyuda@phys.vsu.ru.

Julia A. Fedotova, Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya str., Minsk 220030, Belarus

DSc in Physics and Mathematics, Deputy Head, Institute for Nuclear Problems,
Belarusian State University, Minsk, Belarus; e-mail: julia@hep.by.

Ruslan Ovsyannikov, Helmholtz Zentrum Berlin, 15 Albert Einstein str., Berlin 12489, Germany

PhD, Scientist of the Helmholtz Zentrum Berlin, Berlin, Germany; e-mail:
ovsyannikov@helmholtz-berlin.de.

Sergey Yu. Turishchev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Physics and Mathematics, Associate Professor of the Solid State Physics and Nanostructures Department, Voronezh State University, Voronezh, Russia; e-mail: tsu@phys.vsu.ru.

Published
2020-03-20
How to Cite
Parinova, E. V., Marchenko, D., Fedotov, A. K., Koyuda, D. A., Fedotova, J. A., Ovsyannikov, R., & Turishchev, S. Y. (2020). Spectromicroscopic Studies of Porous Silicon Oxide on Silicon Using Synchrotron Radiation. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(1). https://doi.org/10.17308/kcmf.2020.22/2532
Section
Статьи

Most read articles by the same author(s)