Growing epitaxial layers of InP/InGaAsP heterostructures on the profiled InP surfaces by liquid-phase epitaxy

  • Mikhail G. Vasil’ev Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0002-4279-1707
  • Anton M. Vasil’ev Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0002-9901-5856
  • Alexander D. Izotov Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0002-4639-3415
  • Yuriy O. Kostin Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0001-8172-3988
  • Alexey A. Shelyakin Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0003-0028-005X
Keywords: Heterostructures, Laser diodes, Indium phosphide, Buried heterostructures, Channel in the substrate

Abstract

The effect of various planes was studied when growing epitaxial layers by liquid-phase epitaxy (LPE) on the profiled InP substrates. The studies allowed obtaining buried heterostructures in the InP/InGaAsP system and creating highly efficient laser diodes and image sensors.
It was found that protruding mesa strips or in-depth mesa strips in the form of channels formed by the {111}А, {111}B, {110}, {112}A, or {221}A family of planes can be obtained with the corresponding selection of an etching agent, strip orientation, and a method of obtaining a masking coating. It was noted that in the case of the polarity of axes being in the direction of <111>, the cut of mesa strips was conducted along the most densely packaged planes. This cut led to the difference in rates of both chemical etching and epitaxial burying of profiled surfaces.
The cut was made along the planes at a low dissolution rate {111}A for a sphalerite lattice, to which the studied material, indium phosphide, belongs. Analysis of planes {110} and {Ī10} showed that the location of the most densely packaged planes {111}A and {111}B relative to them is different.

Downloads

Download data is not yet available.

Author Biographies

Mikhail G. Vasil’ev, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

DSc in Technical Sciences,
Professor, Head of the Laboratory of Semiconductor
and Dielectric Materials, Kurnakov Institute of General
and Inorganic Chemistry of the Russian Academy of
Sciences, Moscow, Russian Federation, e-mail: mgvas@igic.ras.ru

Anton M. Vasil’ev, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

Researcher Fellow, Kurnakov
Institute of General and Inorganic Chemistry of the
Russian Academy of Sciences, Moscow, Russian
Federation, e-mail: toto71@bk.ru

Alexander D. Izotov, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

DS cin Chemistry,
Corresponding Member of Russian Academy of
Sciences, Chief Researcher at the Laboratory of
Semiconductor and Dielectric Materials, Kurnakov
Institute of General and Inorganic Chemistry of the
Russian Academy of Sciences, Moscow, Russian
Federation, e-mail: izotov@igic.ras.ru

Yuriy O. Kostin, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

PhD in Technical Science, Senior
Researcher, Kurnakov Institute of General and
Inorganic Chemistry of the Russian Academy of
Sciences, Moscow, Russian Federation, e-mail:
mgvas@igic.ras.ru

Alexey A. Shelyakin, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

PhD in Technical Science,
Senior Researcher at the Laboratory of Semiconductor
and Dielectric Materials, Kurnakov Institute of General
and Inorganic Chemistry of the Russian Academy of
Sciences, Moscow, Russian Federation, e-mail:
mgvas@igic.ras.ru

References

Andreev D. S., Boltar K. O., Vlasov P. V., Irodov N. A., Lopuhin A. A. Investigation of planar photodiodes of a focal plane array based on a heteroepitaxial InGaAs/InP structure. Journal of Communications Technology and Electronics. 2016;61(10): 1220–1225. https://doi.org/10.1134/S1064226916100028

Kong J., Ouyang X. W., Zhou A., Yuan L. B. Highly sensitive directional bending sensor based on eccentric core fiber Mach–Zehnder modal interferometer. IEEE Sensors Journal. 2016;16 (18): 6899–6902. https://doi.org/10.1109/jsen.2016.2589262

Khan M. Z. M., Ng T. K., Ooi B. S. High-Performance 1.55-mu m superluminescent diode based on broad gain InAs/InGaAlAs/InP quantum dash active region. IEEE Photonics Journal. 2014;6(4): 1–8. https://doi.org/10.1109/jphot.2014.2337892

Eichler H. J., Eichler J., Lux O. Semiconductor lasers. In: Lasers. Springer Series in Optical Sciences. Vol 220. Springer, Cham.; 2018. p. 165–203. https://doi.org/10.1007/978-3-319-99895-4_10

Guin S., Das N. R. Modeling power and linewidth of quantum dot superluminescent light emitting diode. Journal of Applied Physics. 2020;128(8): 083102. https://doi.org/10.1063/1.5131550

Sychikova Ya. A. Nanorazmernye struktury na poverkhnosti fosfida indiya [Nanoscale structures on the surface of indium phosphide]. LAP Lambert Academic Publishing; 2014. 132 p. (In Russ.)

Lei P. H., Yang C. D., Wu M., et al. Optimization of active region for 1.3-µm GalnAsP compressive strain multiple-quantum-well ridge waveguide laser diodes. Journal of Electronic Materials. 2006;35(2): 243–249. https://doi.org/10.1007/BF02692442

Emelyanov V. M., Sorokina S. V., Khvostikov V. P., Shvarts M. Z. Simulation of the characteristics of InGaAs/InP-based photovoltaic laser-power converters. Semiconductors. 2016;50(1): 132–137. https://doi.org/10.1134/S1063782616010097

Andreeva E. V., Ilchenko S. N., Ladugin M. A., Marmalyuk A. A., Pankratov K. M., Shidlovskii V. R., Yakubovich S. D. Superluminescent diodes based on asymmetric double-quantum-well heterostructures. Quantum Electrincs. 2019;49(10): 931–935. https://doi.org/10.1070/qel17071

Saidov A. S., Usmonov Sh. N., Saidov M. S. Liquid-phase epitaxy of the (Si2)1−x−y(Ge2)x(GaAs) y substitutional solid solution (0 ≤ x ≤ 0.91, 0 ≤ y ≤ 0.94) and their electrophysical properties. Semiconductors. 2015;49(4): 547–50. https://doi.org/10.1134/s106378261504020x

Vorotyntsev V. M., Skupov V. D. Bazovye tekhnologii mikro- i nanoelektroniki [Basic technologies of micro-and nanoelectronics]. Prospekt Publ.; 2017. 520 p. (In Russ.)

Preobrazhenskii V. V., Putyato M. A., Semyagin B. R. Measurements of parameters of the lowtemperature molecular-beam epitaxy of GaAs. Semiconductors. 2002;36(8): 837–840. https://doi.org/10.1134/1.1500455

Abramkin D. S., Bakarov A. K., Putyato M. A., Emelyanov E. A., Kolotovkina D. A., Gutakovskii A. K., Shamirzaev T. S. Formation of low-dimensional structures in the InSb/AlAs heterosystem. Semiconductors. 2017;51(9): 1233–1239. https://doi.org/10.1134/s1063782617090020

Akchurin R. Kh., Marmalyuk A. A. MOSgidridnaya zpitaksiya v tekhnologii materialov fotoniki i elektroniki [MOS-hydride absorption in photonics and electronics materials technology]. Tekhnosfera Publ.; 2018. 487 p. (In Russ.)

Gagis G. S., Vasil’ev V. I., Levin R. V., Marichev A. E., Pushnyi B. V., Kuchinskii V. I., Kazantsev D. Yu., Ber B. Ya. Investigation of the effect of doping on transition layers of anisotype GaInAsP and InP heterostructures obtained by the method of MOCVD. Technical Physics Letters. 2020;46: 961–963. https://doi.org/10.1134/S1063785020100053

Hasan S., Richard O., Merckling C., Vandervorst W. Encapsulation study of MOVPE grown InAs QDs by InP towards 1550 nm emission. Journal of Crystal Growth. 2021;557: 126010. https://doi.org/10.1016/j.jcrysgro.2020.126010

Vasil’ev M. G., Izotov A. D., Marenkin S. F., Shelyakin A. A. Preparation of shaped indium phosphide surfaces for edge-emitting devices. Inorganic Materials. 2019;55(1): 105–108. https://doi.org/10.1134/s0020168519010175

Mamutin V. V., Ilyinskaya N. D., Bedarev D. A., Levin R. V., Pushnyi B. V. Study of postgrowth processing in the fabrication of quantum-cascade lasers. Semiconductors. 2014;48(8): 1103–1108. https://doi.org/10.1134/s1063782614080181

Vasil’ev M. G., Vasil’ev A. M., Kostin Yu. O., Shelyakin A. A. and Izotov A. D. Study of linear light edge-emitting diodes based on InP/InGaAsP/InP heterostructure with the crescent active region. Inorganic Materials: Applied Research. 2018;9(5): 813–816. https://doi.org/10.1134/S2075113318050295

Vasil’ev M. G., Vasil’ev A. M., Vilk D. M., Shelyakin A. A. LPE growth of InP/InGaAsP/InP heterostructures and separate preparation of hightemperature solutions. Inorganic Materials. 2007;43(7): 683–688. https://doi.org/10.1134/s0020168507070011

Blank T. V., Gol’dberg Yu. A. Mechanisms of current flow in metal-semiconductor ohmic contacts. Semiconductors. 2007;41(11): 1263–1292. https://doi.org/10.1134/s1063782607110012

Vasil’ev M. G., Vasil’ev A. M., Izotov A. D., Shelyakin A. A. Preparation of indium phosphide substrates for epilayer growth. Inorganic Materials. 2018;54(11): 1109–1112. https://doi.org/10.1134/s0020168518110158

Published
2021-06-04
How to Cite
Vasil’ev, M. G., Vasil’ev, A. M., Izotov, A. D., Kostin, Y. O., & Shelyakin, A. A. (2021). Growing epitaxial layers of InP/InGaAsP heterostructures on the profiled InP surfaces by liquid-phase epitaxy. Condensed Matter and Interphases, 23(2), 204-211. https://doi.org/10.17308/kcmf.2021.23/3430
Section
Original articles

Most read articles by the same author(s)