ИК-синхротронная нановизуализация биомиметического слоя на основе триметилдигидрохинолина и нанокристаллического гидроксиапатита

  • Павел Владимирович Середин ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0002-6724-0063
  • Дмитрий Леонидович Голощапов ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0002-1400-2870
  • Ярослав Анатольевич Пешков ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0003-0939-0466
  • Никита Сергеевич Буйлов ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0003-1793-4400
  • Андрей Юрьевич Потапов ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0001-8084-530X
  • Хидмет Сафарович Шихалиев ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0002-6576-0305
  • Юрий Алексеевич Ипполитов Воронежский государственный медицинский университет им. Н. Н. Бурденко, ул. Студенческая, 10, Воронеж 394036, Российская Федерация https://orcid.org/0000-0001-9922-137X
  • Raul O. Freitas Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Sao Paulo, Brazil https://orcid.org/0000-0002-3285-5447
  • Francisco C. B. Maia Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Sao Paulo, Brazil https://orcid.org/0000-0002-4998-4624
Ключевые слова: триметилдигидрохинолин, биомиметический слой, зубная эмаль, инфракрасная спектроскопия ближнего поля, синхротронное излучение

Аннотация

Цель статьи: В работе представлены результаты исследований биомиметического органоминерального слоя на основе триметилдигидрохинолина, полимеризованного в присутствии нанокристаллического карбонатзамещённого нестехиометрического гидроксиапатита.

Экспериментальная часть: Визуализация особенностей морфологии биомиметического слоя реализована с использованием метода синхротронной инфракрасной спектроскопии ближнего поля.

Выводы: Показано, что сформированный на поверхности зубной эмали биомиметический слой имеет морфологическую структуру однородно распределенной и плотноупакованной композиционной плёнки поли 2,2,4-триметил-1,2-дигидрохинолин-6,7-диол/н-кГАп. При этом сформированное томатологическое покрытие на основе полидигидроксихинолина и нанокристаллического гидроксиапатита имеет коэффициент твердости по Виккерсу близкий к тому, который характерен для здоровой эмали

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Павел Владимирович Середин, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

д. ф.-м. н., профессор, заведующий кафедрой, кафедра физики твердого тела и наноструктур, Воронежский государственный университет (Воронеж, Российская Федерация)

Дмитрий Леонидович Голощапов, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

к. ф.-м. н., доцент, кафедра физики твердого тела и наноструктур, Воронежский государственный университет (Воронеж, Российская Федерация)

Ярослав Анатольевич Пешков, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

лаборант-исследователь, кафедра физики твердого тела и наноструктур, Воронежский государственный университет (Воронеж, Российская Федерация) 

Никита Сергеевич Буйлов, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

к. ф.-м. н., доцент, кафедра физики твердого тела и наноструктур, Воронежский государственный университет (Воронеж, Российская Федерация)

Андрей Юрьевич Потапов, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

к. х. н., с. н. с. кафедры органической химии, Воронежский государственный университет (Воронеж, Российская Федерация)

Хидмет Сафарович Шихалиев, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

д. х. н., профессор, заведующий кафедрой органической химии, Воронежский государственный университет (Воронеж, Российская Федерация)

Юрий Алексеевич Ипполитов, Воронежский государственный медицинский университет им. Н. Н. Бурденко, ул. Студенческая, 10, Воронеж 394036, Российская Федерация

д. м. н., профессор, заведующий кафедрой стоматологии института последипломного медицинского образования, Воронежский государственный медицинский университет им. Н. Н. Бурденко (Воронеж, Российская Федерация)

Raul O. Freitas, Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Sao Paulo, Brazil

руководитель канала, Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research
in Energy and Materials (CNPEM), Campinas 13083-970 (Sao Paulo, Brazil)

Francisco C. B. Maia, Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Sao Paulo, Brazil

н. с., Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970 (Sao Paulo, Brazil)

Литература

Setlur A. S., Karunakaran C., Anusha V., … Kusanur R. Investigating the molecular interactions of quinoline derivatives for antibacterial activity against bacillus subtilis: computational biology and in vitro study interpretations. Molecular Biotechnology. 2024;66: 3252–3273. https://doi.org/10.1007/s12033-023-00933-6

Wang R., Cao Y., Jia D., Liu L., Li F. New approach to synthesize 8-hydroxyquinoline-based complexes with Zn2+ and their luminescent properties. Optical Materials. 2013;36: 232–237. https://doi.org/10.1016/j.optmat.2013.08.032

Abeydeera N., Benin B. M., Mudarmah K., … Huang S. D. Harnessing the dual antimicrobial mechanism of action with Fe(8-Hydroxyquinoline)3 to develop a topical ointment for mupirocin-resistant MRSA infections. Antibiotics. 2023;12: 886. https://doi.org/10.3390/antibiotics12050886

Nowicki J., Jaroszewska K., Nowakowska-Bogdan E., Szmatoła M., Iłowska J. Synthesis of 2,2,4-trimethyl-1,2-H-dihydroquinoline (TMQ) over selected organosulfonic acid silica catalysts: selectivity aspects. Molecular Catalysis. 2018;454: 94–103. https://doi.org/10.1016/j.mcat.2018.05.016

Kumar G., Sathe A., Krishna V. S., Sriram D., Jachak S. M. Synthesis and biological evaluation of ihydroquinoline carboxamide derivatives as anti-tubercular agents. European Journal of Medicinal Chemistry. 2018;157: 1–13. https://doi.org/10.1016/j.ejmech.2018.07.046

Ball V. Composite materials and films based on melanins, polydopamine, and other catecholamine-based materials. Biomimetics. 2017;2: 12. https://doi.org/10.3390/biomimetics2030012

Seredin P., Goloshchapov D., Emelyanova A., ... Mahdy I. A. Rapid deposition of the biomimetic hydroxyapatite-polydopamine-amino acid composite layers onto the natural enamel. ACS Omega. 2024. https://doi.org/10.1021/acsomega.3c08491

Kaushik N., Nhat Nguyen L., Kim J. H., Choi E. H., Kumar Kaushik N. Strategies for using polydopamine to induce biomineralization of hydroxyapatite on implant materials for bone tissue engineering. International Journal of Molecular Sciences. 2020;21(18): 6544. https://doi.org/10.3390/ijms21186544

Seredin P., Goloshchapov D., Kashkarov V., ... Prutskij T. Biomimetic mineralization of tooth enamel using nanocrystalline hydroxyapatite under various dental surface pretreatment conditions. Biomimetics. 2022;7(3): 111. https://doi.org/10.3390/biomimetics7030111

Teaford M. F., Smith M. M., Ferguson M. W. J. Development, function and evolution of teeth. Cambridge University Press; 2007.

Freitas R. O., Cernescu A., Engdahl A., … Klementieva O. Nano-infrared imaging of primary neurons. Cells. 2021;10: 2559. https://doi.org/10.3390/cells10102559

Amarie S., Zaslansky P., Kajihara Y., Griesshaber E., Schmahl W. W., Keilmann F. Nano-FTIR chemical mapping of minerals in biological materials. Beilstein Journal of Nanotechnology. 2012;3: 312–323. https://doi.org/10.3762/bjnano.3.35

Seredin P., Goloshchapov D., Peshkov Y., … Freitas R. O. Identification of chemical transformations in enamel apatite during the development of fissure caries at the nanoscale by means of synchrotron infrared nanospectroscopy: a pilot study. Nano-Structures; Nano-Objects. 2024;38: 101205. https://doi.org/10.1016/j.nanoso.2024.101205

López E. O., Rossi A. L., Bernardo P. L., Freitas R. O., Mello A., Rossi A. M. Multiscale connections between morphology and chemistry in crystalline, zinc-substituted hydroxyapatite nanofilms designed for biomedical applications. Ceramics International. 2019;45: 793–804. https://doi.org/10.1016/j.ceramint.2018.09.246

Seredin P., Goloshchapov D., Kashkarov V., … Prutskij T. Development of a visualisation approach for analysing ncipient and clinically unrecorded enamel fissure caries using laser-induced contrast imaging, micro-Raman spectroscopy and biomimetic composites: a pilot study. Journal of Imaging. 2022;8: 137. https://doi.org/10.3390/jimaging8050137

Goloshchapov D. L., Kashkarov V. M., Ippolitov Y. A.; Prutskij T., Seredin P. V. Early screening of dentin caries using the methods of micro-Raman and laser-induced fluorescence spectroscopy. Results in Physics. 2018;10: 346–347. https://doi.org/10.1016/j.rinp.2018.06.040

Seredin P., Goloshchapov D., Prutskij T., Ippolitov Y. Phase transformations in a human tooth tissue at the initial stage of caries. PLoS ONE. 2015;10: e0124008. https://doi.org/10.1371/journal.pone.0124008

Goloshchapov D., Buylov N., Emelyanova A., …Seredin P. Raman and XANES spectroscopic study of the influence of coordination atomic and molecular environments in biomimetic composite materials integrated with ental tissue. Nanomaterials. 2021;11: 3099. https://doi.org/10.3390/nano11113099

Goloshchapov D. L., Minakov D. A., Domashevskaya E. P., Seredin P. V. Excitation of luminescence of the nanoporous bioactive nanocrystalline carbonate-substituted hydroxyapatite for early tooth disease detection. Results in Physics. 2017;7: 3853–3858. https://doi.org/10.1016/j.rinp.2017.09.055

Goloshchapov D. L., Lenshin A. S., Savchenko D. V., Seredin P. V. Importance of defect nanocrystalline calcium hydroxyapatite characteristics for developing the dental biomimetic composites. Results in Physics. 2019;13: 102158. https://doi.org/10.1016/j.rinp.2019.102158

Nakayama M., Kajiyama S., Kumamoto A., … Kato T. Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions. Nature Communications. 2018;9: 568. https://doi.org/10.1038/s41467-018-02932-7

Ocelic N., Huber A., Hillenbrand R. Pseudoheterodyne detection for background-free near-field spectroscopy. Applied Physics Letters. 2006;89: 101124. https://doi.org/10.1063/1.2348781

Keilmann F., Hillenbrand R. Near-field microscopy by elastic light scattering from a tip. Philosophical fransactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 2004;362: 787–805. https://doi.org/10.1098/rsta.2003.1347

Beniash E., Stifler C. A., Sun C.-Y., … Gilbert P. U. P. A. The hidden structure of human enamel. Nature Communications. 2019;10: 4383. https://doi.org/10.1038/s41467-019-12185-7

Free R., DeRocher K., Cooley V., Xu R., Stock S. R., Joester D. Mesoscale structural gradients in human tooth enamel. Proceedings of the National Academy of Sciences. 2022;119: e2211285119. https://doi.org/10.1073/pnas.2211285119

Besnard C., Marie A., Sasidharan S., … Korsunsky A. M. Synchrotron X-ray studies of the structural and functional hierarchies in mineralised human dental enamel: a state-of-the-art review. Dentistry Journal. 2023;11: 98. https://doi.org/10.3390/dj11040098

Huth F., Govyadinov A., Amarie S., Nuansing W., Keilmann F., Hillenbrand R. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Letters. 2012;12: 3973–3978. https://doi.org/10.1021/nl301159v

Mester L., Govyadinov A. A., Chen S., Goikoetxea M., Hillenbrand R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nature Communications. 2020;11: 3359. https://doi.org/10.1038/s41467-020-17034-6

Freitas R. O., Deneke C., Maia F. C. B., … Westfahl H. Low-aberration beamline optics for synchrotron infrared nanospectroscopy. Optics Express. 2018;26: 11238. https://doi.org/10.1364/OE.26.011238

Muller E. A., Pollard B., Bechtel H. A., Van Blerkom P., Raschke M. B. Infrared vibrational nanocrystallography and nanoimaging. Science Advances. 2016;2: e1601006. https://doi.org/10.1126/sciadv.1601006

Matsuya T., Otsuka Y., Tagaya M., Motozuka S., Ohnuma K., Mutoh Y. Formation of stacked luminescent complex of 8-hydroxyquinoline molecules on hydroxyapatite coating by using cold isostatic pressing. Materials Science and Engineering: C. 2016;58: 127–132, https://doi.org/10.1016/j.msec.2015.08.020

Chuenarrom C., Benjakul P., Daosodsai P. Effect of indentation load and time on knoop and vickers microhardness tests for enamel and dentin. Materials Research. 2009;12: 473–476. https://doi.org/10.1590/S1516-14392009000400016

Опубликован
2025-09-25
Как цитировать
Середин, П. В., Голощапов, Д. Л., Пешков, Я. А., Буйлов, Н. С., Потапов, А. Ю., Шихалиев, Х. С., Ипполитов, Ю. А., Freitas, R. O., & Maia, F. C. B. (2025). ИК-синхротронная нановизуализация биомиметического слоя на основе триметилдигидрохинолина и нанокристаллического гидроксиапатита. Конденсированные среды и межфазные границы, 27(3), 483-489. https://doi.org/10.17308/kcmf.2025.27/13021
Раздел
Краткие сообщения

Наиболее читаемые статьи этого автора (авторов)