The physicochemical and catalytic properties of aconitate hydratase isozymes obtained from rat liver by chromatographic methods
Abstract
The aim of the study was to obtain homogeneous aconitate hydratase isozymes (aconitase, aconitate hydratase, EC 4.2.1.3) located in the mitochondria and cytoplasm of rat hepatocytes using chromatographic methods, and to study their physicochemical and catalytic properties. Aconitase activity was determined spectrophotometrically (at 240 nm). To obtain homogeneous preparations of aconitase, the enzyme was purified using chromatographic methods involving several steps (salting out the homogenate with ammonium sulphate, desalting or gel filtration using Sephadex G-25, ion exchange chromatography on DEAE Тоуореаrl, and gel chromatography on Sephadex G-200). The purity of the obtained enzyme preparations was assessed using polyacrylamide gel electrophoresis. The protein in the samples was measured according to Lowry. The molecular weight value of aconitase was determined by denaturing electrophoresis according to the Laemmle’s method. The universal protein staining was carried out using silver nitrate. In order to confirm that the isolated proteins corresponded to aconitate hydratase isozymes, we also carried out the specific gel development by tetrazolium method, adding NADP-isocitrate dehydrogenase (NADP-IDH) as a supporting enzyme.
Using chromatographic methods for purification of aconitase from the liver of Rattus norvegicus Wistar rats, we managed to obtain homogeneous aconitate hydratase enzymatic preparations with specific activity of cytosolic form of 1.736±0.024 U/mg of protein, and of mitochondrial form of 1.256±0.018 U/mg of protein. They were used for the study of physicochemical and kinetic characteristics. The molecular weight of cytoplasmic aconitase from rat hepatocytes was 91±5.2 kDa, and that of mitochondrial aconitase was 81±4.1 kDa. Both forms of aconitase were found to be homodimers. The molecular weight (Mr) of the subunits is 45 kDa for the cytoplasmic fraction and 41 kDa for the mitochondrial aconitase. The kinetic characteristics of the enzymatic reaction catalysed by the cytoplasmic and mitochondrial isozymes of aconitate hydratase obey the Michaelis-Menten equation. We determined that aconitase had a higher affinity to cis-aconitate than to citrate. It was shown that the isozyme from cytoplasm had a pH optimum of 8.0±0.1, i.e., was alkaline compared to the mitochondrial aconitase. (7.4±0.1).
Downloads
References
Ayyar V.S., Sukumaran S., DuBois D.C., Almon R.R., Jusko W.J. Modeling Corticosteroid Pharmacogenomics and Proteomics in Rat Liver. J Pharmacol Exp Ther. 2018; 367(1): 168-183.
Eprintsev A.T., Fedorin D.N., Cherkasskikh M.V., Igamberdiev A.U. Regula-tion of expression of the mitochondrial and cytosolic forms of aconitase in maize leaves via phytochrome. Plant Physiology and Biochemistry. 2020; 146: 157-162.
Chen X.J., Wang X., Butow R.A. Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA. Proc Natl Acad Sci USA. 2007; 104(34): 13738-13743.
Austin C.M., Wang G., Maier R.J. Aconitase Functions as a Pleiotropic Post-transcriptional Regulator in Helicobacter pylori. J Bacteriol. 2015; 197(19): 3076-3086. https://doi.org/10.1128/JB.00529-15
Seznec H., Simon D., Monassier L., Criqui-Filipe P., Gansmuller A., Rustin P., Koenig M., Puccio H. Idebenone delays the onset of cardiac functional alteration without correction of Fe-S enzymes deficit in a mouse model for Friedreich ataxia. Hum Mol Genet. 2004; 13: 1017-1024.
Anderson C.P., Shen M., Eisenstein R.S., Leibold E.A. Mammalian iron me-tabolism and its control by iron regulatory proteins. Biochim Biophys Acta. 2012; 1823(9): 1468-1483.
Mashruwala A.A., Boyd J.M. The Staphylococcus aureus SrrAB Regulatory System Modulates Hydrogen Peroxide Resistance Factors, Which Imparts Protection to Aconitase during Aerobic Growth. PLoS One. 2017; 12(1): e0170283. https://doi.org/10.1371/journal.pone.0170283
Gardner P.R. Aconitase: sensitive target and measure of superoxide. Methods Enzymol. 2002; 349: 9-23.
Kosanović M., Milutinović B., Goč S., Mitić N., Janković M. Ion-exchange chromatography purification of extracellular vesicles. Biotechniques. 2017; 63(2): 65-71. https://doi.org/10.2144/000114575
Eprincev A.T., Popov V.N., Shevchenko M.Yu. Glioksilatnyj cikl: universal'nyj mekhanizm adaptacii? M. Akademkniga. 2007. 228 p. (In Russ.)
Mæhre H.K., Dalheim L., Edvinsen G.K., Elvevoll E.O., Jensen I.-J. Protein Determination-Method Matters. Foods. 2018; 7(1): 5. https://doi.org/10.3390/foods7010005
Chakavarti B., Chakavarti D. Elec-trophoretic separation of proteins. J Vis Exp. 2008; 16: 758. https://doi.org/10.3791/758
Pollock N.L., Rai M., Simond K.S., Hesketh S.J., Teo A.C.K., Parmar M., Sri-dhar P., Collins R., Lee S.C., Stroud Z.N., Bakker S.E., Muench S.P., Barton C.H., Hurlbut G., Roper D.I., Smith C.J.I., Knowles T.J., Spickett C.M., East J., Postis M., Dafforn T. R. SMA-PAGE: A new method to examine complexes of membrane proteins using SMALP nano-encapsulation and native gel electrophoresis. Biochim Bi-ophys Acta Biomembr. 2019; 1861(8): 1437-1445.
Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 1996; 68: 850-858. https://doi.org/10.1021/ac950914h
Eprintsev A.T., Fedorin D.N., Ni-kitina M.V., Igamberdiev A.U. Expression and properties of the mitochondrial and cytosolic forms of aconitase in maize scutellum. Journal of Plant Physiology. 2015; 181: 14-19.
Semenova E.V., Eprincev A.T., Po-pov V.N. Indukciya akonitatgidratazy v gepatocitah golodayushchih krys. Biohimi-ya. 2002; 67(7): 959-966. (In Russ.)
Selivanova N.V., Moiseenko A.V., Bakarev M.YU., Eprincev A.T. Ispol'zovanie ionoobmennoj hromatografii na DEAE-cellyuloze dlya razdeleniya izofermentov malatdegidrogenazy iz gepatocitov krys v norme i pri alloksanovom di-abete. Sorbtsionnye i khromatograficheskie protsessy. 2021; 21(4): 568-576. https://doi.org/10.17308/sorpchrom.2021.21/3641 (In Russ.)
Preble J.M., Pacak Ch.A., Kondo H., MacKay A.A., Cowan D.B., McCully J.D. Rapid isolation and purification of mi-tochondria for transplantation by tissue dis-sociation and differential filtration. J Vis Exp. 2014; 91: 51682. https://doi.org/10.3791/51682
Selemenev V.F., Khohlov V.YU., Bobreshova O.V., Aristov I.V. et al. Fiziko-himicheskie osnovy sorbcionnyh i membrannyh metodov vydeleniya i razdeleniya aminokislot. M. Stelajt. 2002. 299 p. (In Russ.)
Sriram G., Martinez J.A., McCabe E.R., Liao J.C., Dipple K.M. Single-gene disorders: what role could moonlighting enzymes play? Am J Hum Genet. 2005; 76(6): 911-924.
Nakano Sh., Fukaya M., Horinouchi S. Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti. FEMS Microbiol Lett. 2004; 235(2): 315-322. https://doi.org/10.1016/j.femsle.2004.05.007
Flint D.H., Allen, R.M. Ironminus signSulfur Proteins with Nonredox Functions. Chem. Rev. 1996; 96: 2315-2334.
Gruer M.J., Artymiuk P.J., Guest J.R. The aconitase family: three structural variations on a common theme. Trends Biochem. Sci. 1997; 22: 3-6. https://doi.org/10.1016/s0968-0004(96)10069-4
Gawron O.S., Kennedy M.C., Rauner R.A. Properties of pig heart aconitase. Biochem. J. 1974; 143(3): 717-722.
Kennedy M.C., Kent T.A., Emptage M., Merkle H., Beinert H., MünckE. Evidence for the formation of a linear [3Fe-4S] cluster in partially unfolded aconitase. J Biol Chem. 1984; 259(23): 4463-14471.
Uhrigshardt H., Walden M., John H., Anemüller S. Purification and charac-terization of the first archaeal aconitase from the thermoacidophilic Sulfolobus acidocaldarius. Eur J Biochem. 2001; 268(6): 1760-1771.
Schloss J.V., Emptage M.H., Cle-land W.W. pH profiles and isotope effects for aconitases from Saccharomycopsis lipo-lytica, beef heart, and beef liver. alpha-Methyl-cis-aconitate and threo-Ds-alpha-methylisocitrate as substrates. Biochemistry. 1984; 23(20): 4572-4580. https://doi.org/10.1021/bi00315a010