TEM and XPS studies of bio-nanohybrid material based on bacterial ferritin-like protein Dps

Keywords: Nanostructures, Biomolecules, Hybrid materials, Developed surface, Recombinant ferritin-like Dps protein, Transmission electron microscopy, Combination, X-ray photoelectron spectroscopy

Abstract

The work is related to the research of a biohybrid nanomaterial formed on the basis of protein molecules of bacterial origin recombinant ferritin Dps.

To obtain recombinant protein, Escherichia coli cells were used as producers, and purification was carried out chromatographically. The source of iron atoms for the formation of the biohybrid nanomaterial was the Mohr salt. The possibility of the hybrid particles formation, the shape and size of their inorganic core were studied experimentally by high-resolution transmission electron microscopy. The composition and specificity of hybrid particles inorganic core physico–chemical state were studied by X-ray photoelectron spectroscopy, including the use of focused ion etching. It is shown that using the chosen method of nanomaterial formation, the internal cavities of protein molecules deposited inorganic nanoparticles. The sizes of these nanoparticles formed in hollow protein molecules averaged 2 nm. A complex composition of particles has been established, mainly including oxides of the iron-oxygen system. Inclusions of metallic iron are also possible.

The results obtained show the possibility of smooth properties control of the biohybrid nanomaterial through their composition. This makes it extremely attractive for the implementation of modern technologies tasks such as spintronics or targeted delivery of functional nanoparticles.

Downloads

Download data is not yet available.

Author Biographies

Elena V. Parinova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Researcher of the Joint Laboratory “Atomic and
Electronic Structure of Functional Materials”,

Sergey S. Antipov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Immanuel Kant Baltic Federal University, 2 Universitetskaya ul., Kaliningrad 236041, Russian Federation

Dr. Sci. (Biology), Associate
Professor, Biophysics and Biotechnology Department

Evgeny A. Belikov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Engineer of Joint Laboratory
“Atomic and Electronic Structure of Functional
Materials”

Olga A. Chuvenkova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Researcher of the Joint Laboratory “Atomic and
Electronic Structure of Functional Materials”

Iuliia S. Kakuliia, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Leading Engineer of General
Physics Department

Dmitry A. Koyuda, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Junior Researcher of the Joint
Laboratory “Atomic and Electronic Structure of
Functional Materials”

Sergey Yu. Trebunskikh, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Researcher of the Joint Laboratory “Atomic and
Electronic Structure of Functional Materials”

Matvey S. Skorobogatov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

bachelor student of the
Department of Biophysics and Biotechnology

Ratibor G. Chumakov, National Research Center “Kurchatov Institute” 1 Akademika Kurchatova pl., Moscow 123182, Russian Federation

Cand. Sci. (Phys.–Math.),
Senior Researcher of the National Research Center
“Kurchatov Institute” (Moscow, Russian Federation).

Alexei M. Lebedev

Cand. Sci. (Phys.–Math.), Senior
Researcher of the National Research Center “Kurchatov
Institute” 

Alexander A. Sinelnikov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Director of the Collective use Center of Scientific
Equipment

Valerii G. Artyukhov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Biology), Professor,
Head of the Biophysics and Biotechnology Department

Oleg V. Ovchinnikov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.),
Professor, Head of the Optics and Spectroscopy
Department

Mikhail S. Smirnov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.), Associate
Professor, Associate Professor of the Optics and
Spectroscopy Department

Sergey Yu. Turishchev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.),
Associate Professor, Head of the General Physics
Department

References

Hikono T., Uraoka Y., Fuyuki T and Yamashita I. Novel method for making nanodot arrays using a cagelike protein. Japanese Journal of Applied Physics. 2003;42: L398. https://doi.org/10.1143/JJAP.42.L398 2. Cai Y., Deng T., Pan Y., Zink J. I. Use of ferritin capped mesoporous silica nanoparticles for redox and pH triggered drug release in vitro and in vivo. Advanced functional materials. 2020;30(39): 2002043. https://doi.org/10.1002/adfm.202002043

Harrison P. M., Arosio P. The ferritins, molecular properties, iron storage and cellular regulation. Biochimica et Biophysica Acta. 1996;1275(3): 161−203. https://doi.org/10.1016/0005-2728(96)00022-9

Kim J. W., Choi S., Lillehei P. T. Electrochemically controlled reconstitution of immobilized ferritins for bioelectronics applications. Journal of Electroanalytical Chemistry. 2006:601(1): 8–16. https://doi.org/10.1016/j.jelechem.2006.10.018

Almiron M., Link A. J., Furlong D., Kolter R. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes & Development. 1992;6: 2646–2654. https://doi.org/10.1101/gad.6.12b.2646

Ilari A., Ceci P., Ferrari D., Rossi G. L., Chiancone E. Iron incorporation into Escherichia coli Dps gives rise to a ferritin-like microcrystalline core. The Journal of Biological Chemistry. 2002;277(40): 37619–37623. https://doi.org/10.1074/jbc.M206186200

Dubrovin E. V., Dadinova L. A., Petoukhov M. V., Soshinskaya E. Yu., Mozhaev A. A., Klinov D. V., Schaffer T. E., Shtykova E. V., Batishchev O. V. Spatial organization of Dps and DNA–Dps complexes. Journal of Molecular Biology. 2021;433(10): 166930. https://doi.org/10.1016/j.jmb.2021.166930

Zhang Y., Fu J., Chee S. Y., Ang E. X., Orner B. P. Rational disruption of the oligomerization of the miniferritin E. coli DPS through protein–protein interface mutation. Protein Science. 2011;20(11): 1907–1917.https://doi.org/10.1002/pro.731

Bessonova T. A., Shumeiko S. A., Purtov Y. A., Antipov S. S., Preobrazhenskaya E. V., M. Tutukina N., Ozoline O. N. Hexuronates influence the oligomeric form of the Dps structural protein of bacterial nucleoid and its ability to bind to linear DNA fragments. Biophysics. 2016;61(6): 825 832. https://doi.org/10.1134/S0006350916060075

Antipov S. S., Praslova N. V., Usoltseva D. S., Belikov E. A., Chuvenkova O. A., Artyukhov V. G., Turishchev S. Y., Preobrazhenskaya E. V., Ozoline O. N., Pichkur E. B., Presnyakov M. Y. High resolution cryogenic transmission electron microscopy study of Escherichia coli Dps protein: first direct observation in quasinative state. Results in Physics. 2018;11: 926–928. https://doi.org/10.1016/j.rinp.2018.10.059

Antipov S., Turishchev S., Purtov Yu., Shvyreva U., Sinelnikov A., Semov Yu., Preobrazhenskaya E., Berezhnoy A., Shusharina N., Novalokina N., Vakhtel V., Artyukhov V., Ozoline O. The oligomeric form of the Escherichia coli Dps 3 protein depends on the availability of iron ions. Molecules. 2017;22(11): 1904. https://doi.org/10.3390/molecules22111904

Turishchev S. Yu., Antipov S. S., Novolokina N. V., Chuvenkova O. A., Melekhov V. V., Ovsyannikov R., Senkovskii B. V., Timchenko A. A., Ozoline O. N., Domashevskaya E. P. A soft X-ray synchrotron study of the charge state of iron ions in the ferrihydrite core of the ferritin Dps protein in Escherichia coli. Biophysics. 2016;61(5): 705–710. https://doi.org/10.1134/S0006350916050286

Lebedev A. M., Menshikov K. A., Nazin V. G., Stankevich V. G., Tsetlin M. B., Chumakov R. G.. NanoPES photoelectron beamline of the Kurchatov Synchrotron Radiation Source. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2021;15(5): 1039–1044. https://doi.org/10.1134/s1027451021050335

Moulder J. F. et.al Handbook of X-ray photoelectron spectroscopy. Chastain J. (ed). Minnesota: Perkin-Elmer Corporation Physical Electronics; 1992.

Handbooks of Monochromatic XPS Spectra. Vol. 1: The Elements and Native Oxide. XPS International, Inc.; 1999.

NIST X-ray Photoelectron Spectroscopy Database. Режим доступа: https://srdata.nist.gov/xps/

Published
2022-05-30
How to Cite
Parinova, E. V., Antipov, S. S., Belikov, E. A., Chuvenkova, O. A., Kakuliia, I. S., Koyuda, D. A., Trebunskikh, S. Y., Skorobogatov, M. S., Chumakov, R. G., Lebedev, A. M., Sinelnikov, A. A., Artyukhov, V. G., Ovchinnikov, O. V., Smirnov, M. S., & Turishchev, S. Y. (2022). TEM and XPS studies of bio-nanohybrid material based on bacterial ferritin-like protein Dps. Condensed Matter and Interphases, 24(2), 265-272. https://doi.org/10.17308/kcmf.2022.24/9267
Section
Original articles

Most read articles by the same author(s)

1 2 > >>